Metamath Proof Explorer


Theorem s1val

Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1val ( 𝐴𝑉 → ⟨“ 𝐴 ”⟩ = { ⟨ 0 , 𝐴 ⟩ } )

Proof

Step Hyp Ref Expression
1 df-s1 ⟨“ 𝐴 ”⟩ = { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ }
2 fvi ( 𝐴𝑉 → ( I ‘ 𝐴 ) = 𝐴 )
3 2 opeq2d ( 𝐴𝑉 → ⟨ 0 , ( I ‘ 𝐴 ) ⟩ = ⟨ 0 , 𝐴 ⟩ )
4 3 sneqd ( 𝐴𝑉 → { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ } = { ⟨ 0 , 𝐴 ⟩ } )
5 1 4 eqtrid ( 𝐴𝑉 → ⟨“ 𝐴 ”⟩ = { ⟨ 0 , 𝐴 ⟩ } )