Metamath Proof Explorer


Theorem s2cld

Description: A doubleton word is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1 ( 𝜑𝐴𝑋 )
s2cld.2 ( 𝜑𝐵𝑋 )
Assertion s2cld ( 𝜑 → ⟨“ 𝐴 𝐵 ”⟩ ∈ Word 𝑋 )

Proof

Step Hyp Ref Expression
1 s2cld.1 ( 𝜑𝐴𝑋 )
2 s2cld.2 ( 𝜑𝐵𝑋 )
3 df-s2 ⟨“ 𝐴 𝐵 ”⟩ = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐵 ”⟩ )
4 1 s1cld ( 𝜑 → ⟨“ 𝐴 ”⟩ ∈ Word 𝑋 )
5 3 4 2 cats1cld ( 𝜑 → ⟨“ 𝐴 𝐵 ”⟩ ∈ Word 𝑋 )