Metamath Proof Explorer


Theorem s2co

Description: Mapping a doubleton word by a function. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2co.1 ( 𝜑𝐹 : 𝑋𝑌 )
s2co.2 ( 𝜑𝐴𝑋 )
s2co.3 ( 𝜑𝐵𝑋 )
Assertion s2co ( 𝜑 → ( 𝐹 ∘ ⟨“ 𝐴 𝐵 ”⟩ ) = ⟨“ ( 𝐹𝐴 ) ( 𝐹𝐵 ) ”⟩ )

Proof

Step Hyp Ref Expression
1 s2co.1 ( 𝜑𝐹 : 𝑋𝑌 )
2 s2co.2 ( 𝜑𝐴𝑋 )
3 s2co.3 ( 𝜑𝐵𝑋 )
4 df-s2 ⟨“ 𝐴 𝐵 ”⟩ = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐵 ”⟩ )
5 2 s1cld ( 𝜑 → ⟨“ 𝐴 ”⟩ ∈ Word 𝑋 )
6 s1co ( ( 𝐴𝑋𝐹 : 𝑋𝑌 ) → ( 𝐹 ∘ ⟨“ 𝐴 ”⟩ ) = ⟨“ ( 𝐹𝐴 ) ”⟩ )
7 2 1 6 syl2anc ( 𝜑 → ( 𝐹 ∘ ⟨“ 𝐴 ”⟩ ) = ⟨“ ( 𝐹𝐴 ) ”⟩ )
8 df-s2 ⟨“ ( 𝐹𝐴 ) ( 𝐹𝐵 ) ”⟩ = ( ⟨“ ( 𝐹𝐴 ) ”⟩ ++ ⟨“ ( 𝐹𝐵 ) ”⟩ )
9 4 5 3 1 7 8 cats1co ( 𝜑 → ( 𝐹 ∘ ⟨“ 𝐴 𝐵 ”⟩ ) = ⟨“ ( 𝐹𝐴 ) ( 𝐹𝐵 ) ”⟩ )