Metamath Proof Explorer


Theorem s2dmALT

Description: Alternate version of s2dm , having a shorter proof, but requiring that A and B are sets. (Contributed by AV, 9-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion s2dmALT ( ( 𝐴𝑆𝐵𝑆 ) → dom ⟨“ 𝐴 𝐵 ”⟩ = { 0 , 1 } )

Proof

Step Hyp Ref Expression
1 s2prop ( ( 𝐴𝑆𝐵𝑆 ) → ⟨“ 𝐴 𝐵 ”⟩ = { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } )
2 1 dmeqd ( ( 𝐴𝑆𝐵𝑆 ) → dom ⟨“ 𝐴 𝐵 ”⟩ = dom { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } )
3 dmpropg ( ( 𝐴𝑆𝐵𝑆 ) → dom { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } = { 0 , 1 } )
4 2 3 eqtrd ( ( 𝐴𝑆𝐵𝑆 ) → dom ⟨“ 𝐴 𝐵 ”⟩ = { 0 , 1 } )