Description: Alternate version of s2dm , having a shorter proof, but requiring that A and B are sets. (Contributed by AV, 9-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | s2dmALT | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → dom 〈“ 𝐴 𝐵 ”〉 = { 0 , 1 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2prop | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 〈“ 𝐴 𝐵 ”〉 = { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ) | |
2 | 1 | dmeqd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → dom 〈“ 𝐴 𝐵 ”〉 = dom { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ) |
3 | dmpropg | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → dom { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } = { 0 , 1 } ) | |
4 | 2 3 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → dom 〈“ 𝐴 𝐵 ”〉 = { 0 , 1 } ) |