Metamath Proof Explorer


Theorem s2eq2seq

Description: Two length 2 words are equal iff the corresponding symbols are equal. (Contributed by AV, 20-Oct-2018)

Ref Expression
Assertion s2eq2seq ( ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐶𝑉𝐷𝑉 ) ) → ( ⟨“ 𝐴 𝐵 ”⟩ = ⟨“ 𝐶 𝐷 ”⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 s2eq2s1eq ( ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐶𝑉𝐷𝑉 ) ) → ( ⟨“ 𝐴 𝐵 ”⟩ = ⟨“ 𝐶 𝐷 ”⟩ ↔ ( ⟨“ 𝐴 ”⟩ = ⟨“ 𝐶 ”⟩ ∧ ⟨“ 𝐵 ”⟩ = ⟨“ 𝐷 ”⟩ ) ) )
2 s111 ( ( 𝐴𝑉𝐶𝑉 ) → ( ⟨“ 𝐴 ”⟩ = ⟨“ 𝐶 ”⟩ ↔ 𝐴 = 𝐶 ) )
3 2 ad2ant2r ( ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐶𝑉𝐷𝑉 ) ) → ( ⟨“ 𝐴 ”⟩ = ⟨“ 𝐶 ”⟩ ↔ 𝐴 = 𝐶 ) )
4 s111 ( ( 𝐵𝑉𝐷𝑉 ) → ( ⟨“ 𝐵 ”⟩ = ⟨“ 𝐷 ”⟩ ↔ 𝐵 = 𝐷 ) )
5 4 ad2ant2l ( ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐶𝑉𝐷𝑉 ) ) → ( ⟨“ 𝐵 ”⟩ = ⟨“ 𝐷 ”⟩ ↔ 𝐵 = 𝐷 ) )
6 3 5 anbi12d ( ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐶𝑉𝐷𝑉 ) ) → ( ( ⟨“ 𝐴 ”⟩ = ⟨“ 𝐶 ”⟩ ∧ ⟨“ 𝐵 ”⟩ = ⟨“ 𝐷 ”⟩ ) ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )
7 1 6 bitrd ( ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐶𝑉𝐷𝑉 ) ) → ( ⟨“ 𝐴 𝐵 ”⟩ = ⟨“ 𝐶 𝐷 ”⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )