Metamath Proof Explorer


Theorem s2fv0

Description: Extract the first symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s2fv0 ( 𝐴𝑉 → ( ⟨“ 𝐴 𝐵 ”⟩ ‘ 0 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-s2 ⟨“ 𝐴 𝐵 ”⟩ = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐵 ”⟩ )
2 s1cli ⟨“ 𝐴 ”⟩ ∈ Word V
3 s1len ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) = 1
4 s1fv ( 𝐴𝑉 → ( ⟨“ 𝐴 ”⟩ ‘ 0 ) = 𝐴 )
5 0nn0 0 ∈ ℕ0
6 0lt1 0 < 1
7 1 2 3 4 5 6 cats1fv ( 𝐴𝑉 → ( ⟨“ 𝐴 𝐵 ”⟩ ‘ 0 ) = 𝐴 )