Metamath Proof Explorer
Description: Extract the second symbol from a doubleton word. (Contributed by Stefan
O'Rear, 23-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)
|
|
Ref |
Expression |
|
Assertion |
s2fv1 |
⊢ ( 𝐵 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 ”〉 ‘ 1 ) = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-s2 |
⊢ 〈“ 𝐴 𝐵 ”〉 = ( 〈“ 𝐴 ”〉 ++ 〈“ 𝐵 ”〉 ) |
2 |
|
s1cli |
⊢ 〈“ 𝐴 ”〉 ∈ Word V |
3 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝐴 ”〉 ) = 1 |
4 |
1 2 3
|
cats1fvn |
⊢ ( 𝐵 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 ”〉 ‘ 1 ) = 𝐵 ) |