Metamath Proof Explorer


Theorem s2len

Description: The length of a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s2len ( ♯ ‘ ⟨“ 𝐴 𝐵 ”⟩ ) = 2

Proof

Step Hyp Ref Expression
1 df-s2 ⟨“ 𝐴 𝐵 ”⟩ = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐵 ”⟩ )
2 s1cli ⟨“ 𝐴 ”⟩ ∈ Word V
3 s1len ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) = 1
4 1p1e2 ( 1 + 1 ) = 2
5 1 2 3 4 cats1len ( ♯ ‘ ⟨“ 𝐴 𝐵 ”⟩ ) = 2