Metamath Proof Explorer


Theorem s3cl

Description: A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s3cl ( ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ Word 𝑋 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) → 𝐴𝑋 )
2 simp2 ( ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) → 𝐵𝑋 )
3 simp3 ( ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) → 𝐶𝑋 )
4 1 2 3 s3cld ( ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ Word 𝑋 )