Metamath Proof Explorer


Theorem s3cld

Description: A length 3 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1 ( 𝜑𝐴𝑋 )
s2cld.2 ( 𝜑𝐵𝑋 )
s3cld.3 ( 𝜑𝐶𝑋 )
Assertion s3cld ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ Word 𝑋 )

Proof

Step Hyp Ref Expression
1 s2cld.1 ( 𝜑𝐴𝑋 )
2 s2cld.2 ( 𝜑𝐵𝑋 )
3 s3cld.3 ( 𝜑𝐶𝑋 )
4 df-s3 ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ( ⟨“ 𝐴 𝐵 ”⟩ ++ ⟨“ 𝐶 ”⟩ )
5 1 2 s2cld ( 𝜑 → ⟨“ 𝐴 𝐵 ”⟩ ∈ Word 𝑋 )
6 4 5 3 cats1cld ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ Word 𝑋 )