Metamath Proof Explorer


Theorem s3clhash

Description: Closure of the words of length 3 in a preimage using the hash function. (Contributed by Thierry Arnoux, 27-Sep-2023)

Ref Expression
Assertion s3clhash ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ ( ♯ “ { 3 } )

Proof

Step Hyp Ref Expression
1 s3cli ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ Word V
2 1 elexi ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ V
3 s3len ( ♯ ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) = 3
4 hashf ♯ : V ⟶ ( ℕ0 ∪ { +∞ } )
5 ffn ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V )
6 fniniseg ( ♯ Fn V → ( ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ ( ♯ “ { 3 } ) ↔ ( ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ V ∧ ( ♯ ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) = 3 ) ) )
7 4 5 6 mp2b ( ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ ( ♯ “ { 3 } ) ↔ ( ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ V ∧ ( ♯ ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) = 3 ) )
8 2 3 7 mpbir2an ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ ( ♯ “ { 3 } )