Metamath Proof Explorer


Theorem s3eq2

Description: Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022)

Ref Expression
Assertion s3eq2 ( 𝐵 = 𝐷 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ⟨“ 𝐴 𝐷 𝐶 ”⟩ )

Proof

Step Hyp Ref Expression
1 eqidd ( 𝐵 = 𝐷𝐴 = 𝐴 )
2 id ( 𝐵 = 𝐷𝐵 = 𝐷 )
3 eqidd ( 𝐵 = 𝐷𝐶 = 𝐶 )
4 1 2 3 s3eqd ( 𝐵 = 𝐷 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ⟨“ 𝐴 𝐷 𝐶 ”⟩ )