Metamath Proof Explorer


Theorem s3eqd

Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1 ( 𝜑𝐴 = 𝑁 )
s2eqd.2 ( 𝜑𝐵 = 𝑂 )
s3eqd.3 ( 𝜑𝐶 = 𝑃 )
Assertion s3eqd ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ⟨“ 𝑁 𝑂 𝑃 ”⟩ )

Proof

Step Hyp Ref Expression
1 s2eqd.1 ( 𝜑𝐴 = 𝑁 )
2 s2eqd.2 ( 𝜑𝐵 = 𝑂 )
3 s3eqd.3 ( 𝜑𝐶 = 𝑃 )
4 1 2 s2eqd ( 𝜑 → ⟨“ 𝐴 𝐵 ”⟩ = ⟨“ 𝑁 𝑂 ”⟩ )
5 3 s1eqd ( 𝜑 → ⟨“ 𝐶 ”⟩ = ⟨“ 𝑃 ”⟩ )
6 4 5 oveq12d ( 𝜑 → ( ⟨“ 𝐴 𝐵 ”⟩ ++ ⟨“ 𝐶 ”⟩ ) = ( ⟨“ 𝑁 𝑂 ”⟩ ++ ⟨“ 𝑃 ”⟩ ) )
7 df-s3 ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ( ⟨“ 𝐴 𝐵 ”⟩ ++ ⟨“ 𝐶 ”⟩ )
8 df-s3 ⟨“ 𝑁 𝑂 𝑃 ”⟩ = ( ⟨“ 𝑁 𝑂 ”⟩ ++ ⟨“ 𝑃 ”⟩ )
9 6 7 8 3eqtr4g ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ⟨“ 𝑁 𝑂 𝑃 ”⟩ )