Metamath Proof Explorer


Theorem s3fv0

Description: Extract the first symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017)

Ref Expression
Assertion s3fv0 ( 𝐴𝑉 → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ‘ 0 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-s3 ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ( ⟨“ 𝐴 𝐵 ”⟩ ++ ⟨“ 𝐶 ”⟩ )
2 s2cli ⟨“ 𝐴 𝐵 ”⟩ ∈ Word V
3 s2len ( ♯ ‘ ⟨“ 𝐴 𝐵 ”⟩ ) = 2
4 s2fv0 ( 𝐴𝑉 → ( ⟨“ 𝐴 𝐵 ”⟩ ‘ 0 ) = 𝐴 )
5 0nn0 0 ∈ ℕ0
6 2pos 0 < 2
7 1 2 3 4 5 6 cats1fv ( 𝐴𝑉 → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ‘ 0 ) = 𝐴 )