Metamath Proof Explorer


Theorem s3len

Description: The length of a length 3 string. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s3len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ) = 3

Proof

Step Hyp Ref Expression
1 df-s3 ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ( ⟨“ 𝐴 𝐵 ”⟩ ++ ⟨“ 𝐶 ”⟩ )
2 s2cli ⟨“ 𝐴 𝐵 ”⟩ ∈ Word V
3 s2len ( ♯ ‘ ⟨“ 𝐴 𝐵 ”⟩ ) = 2
4 2p1e3 ( 2 + 1 ) = 3
5 1 2 3 4 cats1len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ) = 3