Step |
Hyp |
Ref |
Expression |
1 |
|
dmeq |
⊢ ( 𝐸 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 → dom 𝐸 = dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) |
2 |
|
s4prop |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 = ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) ) |
3 |
2
|
dmeqd |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 = dom ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) ) |
4 |
|
dmun |
⊢ dom ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) = ( dom { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ dom { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) |
5 |
|
dmpropg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → dom { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } = { 0 , 1 } ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → dom { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } = { 0 , 1 } ) |
7 |
|
dmpropg |
⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) → dom { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } = { 2 , 3 } ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → dom { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } = { 2 , 3 } ) |
9 |
6 8
|
uneq12d |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( dom { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ dom { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) = ( { 0 , 1 } ∪ { 2 , 3 } ) ) |
10 |
4 9
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → dom ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) = ( { 0 , 1 } ∪ { 2 , 3 } ) ) |
11 |
3 10
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 = ( { 0 , 1 } ∪ { 2 , 3 } ) ) |
12 |
1 11
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) ∧ 𝐸 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) → dom 𝐸 = ( { 0 , 1 } ∪ { 2 , 3 } ) ) |
13 |
12
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐸 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 → dom 𝐸 = ( { 0 , 1 } ∪ { 2 , 3 } ) ) ) |