Metamath Proof Explorer


Theorem s4fv3

Description: Extract the fourth symbol from a length 4 string. (Contributed by Thierry Arnoux, 8-Oct-2020)

Ref Expression
Assertion s4fv3 ( 𝐷𝑉 → ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ‘ 3 ) = 𝐷 )

Proof

Step Hyp Ref Expression
1 df-s4 ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ = ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ++ ⟨“ 𝐷 ”⟩ )
2 s3cli ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ Word V
3 s3len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ) = 3
4 1 2 3 cats1fvn ( 𝐷𝑉 → ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ‘ 3 ) = 𝐷 )