Metamath Proof Explorer


Theorem s5eqd

Description: Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1 ( 𝜑𝐴 = 𝑁 )
s2eqd.2 ( 𝜑𝐵 = 𝑂 )
s3eqd.3 ( 𝜑𝐶 = 𝑃 )
s4eqd.4 ( 𝜑𝐷 = 𝑄 )
s5eqd.5 ( 𝜑𝐸 = 𝑅 )
Assertion s5eqd ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 ”⟩ = ⟨“ 𝑁 𝑂 𝑃 𝑄 𝑅 ”⟩ )

Proof

Step Hyp Ref Expression
1 s2eqd.1 ( 𝜑𝐴 = 𝑁 )
2 s2eqd.2 ( 𝜑𝐵 = 𝑂 )
3 s3eqd.3 ( 𝜑𝐶 = 𝑃 )
4 s4eqd.4 ( 𝜑𝐷 = 𝑄 )
5 s5eqd.5 ( 𝜑𝐸 = 𝑅 )
6 1 2 3 4 s4eqd ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ = ⟨“ 𝑁 𝑂 𝑃 𝑄 ”⟩ )
7 5 s1eqd ( 𝜑 → ⟨“ 𝐸 ”⟩ = ⟨“ 𝑅 ”⟩ )
8 6 7 oveq12d ( 𝜑 → ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ++ ⟨“ 𝐸 ”⟩ ) = ( ⟨“ 𝑁 𝑂 𝑃 𝑄 ”⟩ ++ ⟨“ 𝑅 ”⟩ ) )
9 df-s5 ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 ”⟩ = ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ++ ⟨“ 𝐸 ”⟩ )
10 df-s5 ⟨“ 𝑁 𝑂 𝑃 𝑄 𝑅 ”⟩ = ( ⟨“ 𝑁 𝑂 𝑃 𝑄 ”⟩ ++ ⟨“ 𝑅 ”⟩ )
11 8 9 10 3eqtr4g ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 ”⟩ = ⟨“ 𝑁 𝑂 𝑃 𝑄 𝑅 ”⟩ )