Metamath Proof Explorer


Theorem s5len

Description: The length of a length 5 string. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s5len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 ”⟩ ) = 5

Proof

Step Hyp Ref Expression
1 df-s5 ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 ”⟩ = ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ++ ⟨“ 𝐸 ”⟩ )
2 s4cli ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ∈ Word V
3 s4len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) = 4
4 4p1e5 ( 4 + 1 ) = 5
5 1 2 3 4 cats1len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 ”⟩ ) = 5