Metamath Proof Explorer


Theorem s6len

Description: The length of a length 6 string. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s6len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 ”⟩ ) = 6

Proof

Step Hyp Ref Expression
1 df-s6 ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 ”⟩ = ( ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 ”⟩ ++ ⟨“ 𝐹 ”⟩ )
2 s5cli ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 ”⟩ ∈ Word V
3 s5len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 ”⟩ ) = 5
4 5p1e6 ( 5 + 1 ) = 6
5 1 2 3 4 cats1len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 ”⟩ ) = 6