Metamath Proof Explorer


Theorem s7len

Description: The length of a length 7 string. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s7len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 ”⟩ ) = 7

Proof

Step Hyp Ref Expression
1 df-s7 ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 ”⟩ = ( ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 ”⟩ ++ ⟨“ 𝐺 ”⟩ )
2 s6cli ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 ”⟩ ∈ Word V
3 s6len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 ”⟩ ) = 6
4 6p1e7 ( 6 + 1 ) = 7
5 1 2 3 4 cats1len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 ”⟩ ) = 7