Metamath Proof Explorer


Theorem s8eqd

Description: Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1 ( 𝜑𝐴 = 𝑁 )
s2eqd.2 ( 𝜑𝐵 = 𝑂 )
s3eqd.3 ( 𝜑𝐶 = 𝑃 )
s4eqd.4 ( 𝜑𝐷 = 𝑄 )
s5eqd.5 ( 𝜑𝐸 = 𝑅 )
s6eqd.6 ( 𝜑𝐹 = 𝑆 )
s7eqd.6 ( 𝜑𝐺 = 𝑇 )
s8eqd.6 ( 𝜑𝐻 = 𝑈 )
Assertion s8eqd ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 ”⟩ = ⟨“ 𝑁 𝑂 𝑃 𝑄 𝑅 𝑆 𝑇 𝑈 ”⟩ )

Proof

Step Hyp Ref Expression
1 s2eqd.1 ( 𝜑𝐴 = 𝑁 )
2 s2eqd.2 ( 𝜑𝐵 = 𝑂 )
3 s3eqd.3 ( 𝜑𝐶 = 𝑃 )
4 s4eqd.4 ( 𝜑𝐷 = 𝑄 )
5 s5eqd.5 ( 𝜑𝐸 = 𝑅 )
6 s6eqd.6 ( 𝜑𝐹 = 𝑆 )
7 s7eqd.6 ( 𝜑𝐺 = 𝑇 )
8 s8eqd.6 ( 𝜑𝐻 = 𝑈 )
9 1 2 3 4 5 6 7 s7eqd ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 ”⟩ = ⟨“ 𝑁 𝑂 𝑃 𝑄 𝑅 𝑆 𝑇 ”⟩ )
10 8 s1eqd ( 𝜑 → ⟨“ 𝐻 ”⟩ = ⟨“ 𝑈 ”⟩ )
11 9 10 oveq12d ( 𝜑 → ( ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 ”⟩ ++ ⟨“ 𝐻 ”⟩ ) = ( ⟨“ 𝑁 𝑂 𝑃 𝑄 𝑅 𝑆 𝑇 ”⟩ ++ ⟨“ 𝑈 ”⟩ ) )
12 df-s8 ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 ”⟩ = ( ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 ”⟩ ++ ⟨“ 𝐻 ”⟩ )
13 df-s8 ⟨“ 𝑁 𝑂 𝑃 𝑄 𝑅 𝑆 𝑇 𝑈 ”⟩ = ( ⟨“ 𝑁 𝑂 𝑃 𝑄 𝑅 𝑆 𝑇 ”⟩ ++ ⟨“ 𝑈 ”⟩ )
14 11 12 13 3eqtr4g ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 ”⟩ = ⟨“ 𝑁 𝑂 𝑃 𝑄 𝑅 𝑆 𝑇 𝑈 ”⟩ )