| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0cn |
⊢ 0 ∈ ℂ |
| 2 |
|
ifcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝜓 , 𝐴 , 0 ) ∈ ℂ ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → if ( 𝜓 , 𝐴 , 0 ) ∈ ℂ ) |
| 4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → if ( 𝜓 , 𝐴 , 0 ) ∈ ℂ ) |
| 5 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → 𝐴 ∈ ℂ ) |
| 6 |
4 5 5
|
add12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → ( if ( 𝜓 , 𝐴 , 0 ) + ( 𝐴 + 𝐴 ) ) = ( 𝐴 + ( if ( 𝜓 , 𝐴 , 0 ) + 𝐴 ) ) ) |
| 7 |
5 4 5
|
addassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → ( ( 𝐴 + if ( 𝜓 , 𝐴 , 0 ) ) + 𝐴 ) = ( 𝐴 + ( if ( 𝜓 , 𝐴 , 0 ) + 𝐴 ) ) ) |
| 8 |
6 7
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → ( if ( 𝜓 , 𝐴 , 0 ) + ( 𝐴 + 𝐴 ) ) = ( ( 𝐴 + if ( 𝜓 , 𝐴 , 0 ) ) + 𝐴 ) ) |
| 9 |
|
pm5.501 |
⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → ( 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 11 |
10
|
bicomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜓 ) ) |
| 12 |
11
|
ifbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → if ( ( 𝜑 ↔ 𝜓 ) , 𝐴 , 0 ) = if ( 𝜓 , 𝐴 , 0 ) ) |
| 13 |
|
animorrl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → ( 𝜑 ∨ 𝜓 ) ) |
| 14 |
|
iftrue |
⊢ ( ( 𝜑 ∨ 𝜓 ) → if ( ( 𝜑 ∨ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) = ( 2 · 𝐴 ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → if ( ( 𝜑 ∨ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) = ( 2 · 𝐴 ) ) |
| 16 |
5
|
2timesd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
| 17 |
15 16
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → if ( ( 𝜑 ∨ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) = ( 𝐴 + 𝐴 ) ) |
| 18 |
12 17
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → ( if ( ( 𝜑 ↔ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∨ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) = ( if ( 𝜓 , 𝐴 , 0 ) + ( 𝐴 + 𝐴 ) ) ) |
| 19 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 0 ) = 𝐴 ) |
| 20 |
19
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → if ( 𝜑 , 𝐴 , 0 ) = 𝐴 ) |
| 21 |
20
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) = ( 𝐴 + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 22 |
21
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + 𝐴 ) = ( ( 𝐴 + if ( 𝜓 , 𝐴 , 0 ) ) + 𝐴 ) ) |
| 23 |
8 18 22
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ 𝜑 ) → ( if ( ( 𝜑 ↔ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∨ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) = ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + 𝐴 ) ) |
| 24 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 0 ) = 0 ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → if ( 𝜑 , 𝐴 , 0 ) = 0 ) |
| 26 |
25
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) = ( 0 + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 27 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → if ( 𝜓 , 𝐴 , 0 ) ∈ ℂ ) |
| 28 |
27
|
addlidd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → ( 0 + if ( 𝜓 , 𝐴 , 0 ) ) = if ( 𝜓 , 𝐴 , 0 ) ) |
| 29 |
26 28
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) = if ( 𝜓 , 𝐴 , 0 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + 𝐴 ) = ( if ( 𝜓 , 𝐴 , 0 ) + 𝐴 ) ) |
| 31 |
|
2cnd |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℂ ) |
| 32 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 33 |
31 32
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) ∈ ℂ ) |
| 34 |
33
|
addlidd |
⊢ ( 𝐴 ∈ ℂ → ( 0 + ( 2 · 𝐴 ) ) = ( 2 · 𝐴 ) ) |
| 35 |
|
2times |
⊢ ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
| 36 |
34 35
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( 0 + ( 2 · 𝐴 ) ) = ( 𝐴 + 𝐴 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜓 ) → ( 0 + ( 2 · 𝐴 ) ) = ( 𝐴 + 𝐴 ) ) |
| 38 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , 0 , 𝐴 ) = 0 ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜓 ) → if ( 𝜓 , 0 , 𝐴 ) = 0 ) |
| 40 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) = ( 2 · 𝐴 ) ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜓 ) → if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) = ( 2 · 𝐴 ) ) |
| 42 |
39 41
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜓 ) → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( 0 + ( 2 · 𝐴 ) ) ) |
| 43 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , 𝐴 , 0 ) = 𝐴 ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜓 ) → if ( 𝜓 , 𝐴 , 0 ) = 𝐴 ) |
| 45 |
44
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜓 ) → ( if ( 𝜓 , 𝐴 , 0 ) + 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
| 46 |
37 42 45
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜓 ) → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( if ( 𝜓 , 𝐴 , 0 ) + 𝐴 ) ) |
| 47 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜓 ) → 𝐴 ∈ ℂ ) |
| 48 |
|
0cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜓 ) → 0 ∈ ℂ ) |
| 49 |
47 48
|
addcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜓 ) → ( 𝐴 + 0 ) = ( 0 + 𝐴 ) ) |
| 50 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , 0 , 𝐴 ) = 𝐴 ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜓 ) → if ( 𝜓 , 0 , 𝐴 ) = 𝐴 ) |
| 52 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) = 0 ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜓 ) → if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) = 0 ) |
| 54 |
51 53
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜓 ) → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( 𝐴 + 0 ) ) |
| 55 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 0 ) = 0 ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜓 ) → if ( 𝜓 , 𝐴 , 0 ) = 0 ) |
| 57 |
56
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜓 ) → ( if ( 𝜓 , 𝐴 , 0 ) + 𝐴 ) = ( 0 + 𝐴 ) ) |
| 58 |
49 54 57
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜓 ) → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( if ( 𝜓 , 𝐴 , 0 ) + 𝐴 ) ) |
| 59 |
46 58
|
pm2.61dan |
⊢ ( 𝐴 ∈ ℂ → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( if ( 𝜓 , 𝐴 , 0 ) + 𝐴 ) ) |
| 60 |
59
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( if ( 𝜓 , 𝐴 , 0 ) + 𝐴 ) ) |
| 61 |
|
ifnot |
⊢ if ( ¬ 𝜓 , 𝐴 , 0 ) = if ( 𝜓 , 0 , 𝐴 ) |
| 62 |
|
nbn2 |
⊢ ( ¬ 𝜑 → ( ¬ 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 63 |
62
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → ( ¬ 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 64 |
63
|
ifbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → if ( ¬ 𝜓 , 𝐴 , 0 ) = if ( ( 𝜑 ↔ 𝜓 ) , 𝐴 , 0 ) ) |
| 65 |
61 64
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → if ( 𝜓 , 0 , 𝐴 ) = if ( ( 𝜑 ↔ 𝜓 ) , 𝐴 , 0 ) ) |
| 66 |
|
biorf |
⊢ ( ¬ 𝜑 → ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) |
| 67 |
66
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) |
| 68 |
67
|
ifbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) = if ( ( 𝜑 ∨ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) |
| 69 |
65 68
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( if ( ( 𝜑 ↔ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∨ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) ) |
| 70 |
30 60 69
|
3eqtr2rd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) ∧ ¬ 𝜑 ) → ( if ( ( 𝜑 ↔ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∨ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) = ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + 𝐴 ) ) |
| 71 |
23 70
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) → ( if ( ( 𝜑 ↔ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∨ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) = ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + 𝐴 ) ) |
| 72 |
|
hadrot |
⊢ ( hadd ( 𝜒 , 𝜑 , 𝜓 ) ↔ hadd ( 𝜑 , 𝜓 , 𝜒 ) ) |
| 73 |
|
had1 |
⊢ ( 𝜒 → ( hadd ( 𝜒 , 𝜑 , 𝜓 ) ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 74 |
72 73
|
bitr3id |
⊢ ( 𝜒 → ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) → ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 76 |
75
|
ifbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) → if ( hadd ( 𝜑 , 𝜓 , 𝜒 ) , 𝐴 , 0 ) = if ( ( 𝜑 ↔ 𝜓 ) , 𝐴 , 0 ) ) |
| 77 |
|
cad1 |
⊢ ( 𝜒 → ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ) ) ) |
| 78 |
77
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) → ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ) ) ) |
| 79 |
78
|
ifbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) → if ( cadd ( 𝜑 , 𝜓 , 𝜒 ) , ( 2 · 𝐴 ) , 0 ) = if ( ( 𝜑 ∨ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) |
| 80 |
76 79
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) → ( if ( hadd ( 𝜑 , 𝜓 , 𝜒 ) , 𝐴 , 0 ) + if ( cadd ( 𝜑 , 𝜓 , 𝜒 ) , ( 2 · 𝐴 ) , 0 ) ) = ( if ( ( 𝜑 ↔ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∨ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) ) |
| 81 |
|
iftrue |
⊢ ( 𝜒 → if ( 𝜒 , 𝐴 , 0 ) = 𝐴 ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) → if ( 𝜒 , 𝐴 , 0 ) = 𝐴 ) |
| 83 |
82
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) → ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + if ( 𝜒 , 𝐴 , 0 ) ) = ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + 𝐴 ) ) |
| 84 |
71 80 83
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜒 ) → ( if ( hadd ( 𝜑 , 𝜓 , 𝜒 ) , 𝐴 , 0 ) + if ( cadd ( 𝜑 , 𝜓 , 𝜒 ) , ( 2 · 𝐴 ) , 0 ) ) = ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + if ( 𝜒 , 𝐴 , 0 ) ) ) |
| 85 |
19
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → if ( 𝜑 , 𝐴 , 0 ) = 𝐴 ) |
| 86 |
85
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) = ( 𝐴 + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 87 |
44
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜓 ) → ( 𝐴 + if ( 𝜓 , 𝐴 , 0 ) ) = ( 𝐴 + 𝐴 ) ) |
| 88 |
37 42 87
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝜓 ) → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( 𝐴 + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 89 |
53 56
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜓 ) → if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) = if ( 𝜓 , 𝐴 , 0 ) ) |
| 90 |
51 89
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜓 ) → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( 𝐴 + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 91 |
88 90
|
pm2.61dan |
⊢ ( 𝐴 ∈ ℂ → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( 𝐴 + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 92 |
91
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( 𝐴 + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 93 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → ( 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 94 |
93
|
notbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → ( ¬ 𝜓 ↔ ¬ ( 𝜑 ↔ 𝜓 ) ) ) |
| 95 |
|
df-xor |
⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ¬ ( 𝜑 ↔ 𝜓 ) ) |
| 96 |
94 95
|
bitr4di |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → ( ¬ 𝜓 ↔ ( 𝜑 ⊻ 𝜓 ) ) ) |
| 97 |
96
|
ifbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → if ( ¬ 𝜓 , 𝐴 , 0 ) = if ( ( 𝜑 ⊻ 𝜓 ) , 𝐴 , 0 ) ) |
| 98 |
61 97
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → if ( 𝜓 , 0 , 𝐴 ) = if ( ( 𝜑 ⊻ 𝜓 ) , 𝐴 , 0 ) ) |
| 99 |
|
ibar |
⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 100 |
99
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → ( 𝜓 ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 101 |
100
|
ifbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) = if ( ( 𝜑 ∧ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) |
| 102 |
98 101
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → ( if ( 𝜓 , 0 , 𝐴 ) + if ( 𝜓 , ( 2 · 𝐴 ) , 0 ) ) = ( if ( ( 𝜑 ⊻ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∧ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) ) |
| 103 |
86 92 102
|
3eqtr2rd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ 𝜑 ) → ( if ( ( 𝜑 ⊻ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∧ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 104 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) ∧ 𝜓 ) → 𝐴 ∈ ℂ ) |
| 105 |
|
0cnd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) ∧ ¬ 𝜓 ) → 0 ∈ ℂ ) |
| 106 |
104 105
|
ifclda |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → if ( 𝜓 , 𝐴 , 0 ) ∈ ℂ ) |
| 107 |
|
0cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → 0 ∈ ℂ ) |
| 108 |
106 107
|
addcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → ( if ( 𝜓 , 𝐴 , 0 ) + 0 ) = ( 0 + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 109 |
62
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → ( ¬ 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 110 |
109
|
con1bid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ 𝜓 ) ) |
| 111 |
95 110
|
bitrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜓 ) ) |
| 112 |
111
|
ifbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → if ( ( 𝜑 ⊻ 𝜓 ) , 𝐴 , 0 ) = if ( 𝜓 , 𝐴 , 0 ) ) |
| 113 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → ¬ 𝜑 ) |
| 114 |
113
|
intnanrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → ¬ ( 𝜑 ∧ 𝜓 ) ) |
| 115 |
|
iffalse |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) → if ( ( 𝜑 ∧ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) = 0 ) |
| 116 |
114 115
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → if ( ( 𝜑 ∧ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) = 0 ) |
| 117 |
112 116
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → ( if ( ( 𝜑 ⊻ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∧ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) = ( if ( 𝜓 , 𝐴 , 0 ) + 0 ) ) |
| 118 |
24
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → if ( 𝜑 , 𝐴 , 0 ) = 0 ) |
| 119 |
118
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) = ( 0 + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 120 |
108 117 119
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) ∧ ¬ 𝜑 ) → ( if ( ( 𝜑 ⊻ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∧ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 121 |
103 120
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) → ( if ( ( 𝜑 ⊻ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∧ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 122 |
|
had0 |
⊢ ( ¬ 𝜒 → ( hadd ( 𝜒 , 𝜑 , 𝜓 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) ) |
| 123 |
72 122
|
bitr3id |
⊢ ( ¬ 𝜒 → ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) ) |
| 124 |
123
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) → ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) ) |
| 125 |
124
|
ifbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) → if ( hadd ( 𝜑 , 𝜓 , 𝜒 ) , 𝐴 , 0 ) = if ( ( 𝜑 ⊻ 𝜓 ) , 𝐴 , 0 ) ) |
| 126 |
|
cad0 |
⊢ ( ¬ 𝜒 → ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 127 |
126
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) → ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 128 |
127
|
ifbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) → if ( cadd ( 𝜑 , 𝜓 , 𝜒 ) , ( 2 · 𝐴 ) , 0 ) = if ( ( 𝜑 ∧ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) |
| 129 |
125 128
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) → ( if ( hadd ( 𝜑 , 𝜓 , 𝜒 ) , 𝐴 , 0 ) + if ( cadd ( 𝜑 , 𝜓 , 𝜒 ) , ( 2 · 𝐴 ) , 0 ) ) = ( if ( ( 𝜑 ⊻ 𝜓 ) , 𝐴 , 0 ) + if ( ( 𝜑 ∧ 𝜓 ) , ( 2 · 𝐴 ) , 0 ) ) ) |
| 130 |
|
iffalse |
⊢ ( ¬ 𝜒 → if ( 𝜒 , 𝐴 , 0 ) = 0 ) |
| 131 |
130
|
oveq2d |
⊢ ( ¬ 𝜒 → ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + if ( 𝜒 , 𝐴 , 0 ) ) = ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + 0 ) ) |
| 132 |
|
ifcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝜑 , 𝐴 , 0 ) ∈ ℂ ) |
| 133 |
1 132
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → if ( 𝜑 , 𝐴 , 0 ) ∈ ℂ ) |
| 134 |
133 3
|
addcld |
⊢ ( 𝐴 ∈ ℂ → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ∈ ℂ ) |
| 135 |
134
|
addridd |
⊢ ( 𝐴 ∈ ℂ → ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + 0 ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 136 |
131 135
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) → ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + if ( 𝜒 , 𝐴 , 0 ) ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) |
| 137 |
121 129 136
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝜒 ) → ( if ( hadd ( 𝜑 , 𝜓 , 𝜒 ) , 𝐴 , 0 ) + if ( cadd ( 𝜑 , 𝜓 , 𝜒 ) , ( 2 · 𝐴 ) , 0 ) ) = ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + if ( 𝜒 , 𝐴 , 0 ) ) ) |
| 138 |
84 137
|
pm2.61dan |
⊢ ( 𝐴 ∈ ℂ → ( if ( hadd ( 𝜑 , 𝜓 , 𝜒 ) , 𝐴 , 0 ) + if ( cadd ( 𝜑 , 𝜓 , 𝜒 ) , ( 2 · 𝐴 ) , 0 ) ) = ( ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) + if ( 𝜒 , 𝐴 , 0 ) ) ) |