Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0 ) → 𝐴 ⊆ ℕ0 ) |
2 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0 ) → 𝐵 ⊆ ℕ0 ) |
3 |
|
eqid |
⊢ seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) = seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
4 |
1 2 3
|
sadfval |
⊢ ( ( 𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0 ) → ( 𝐴 sadd 𝐵 ) = { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘 ∈ 𝐴 , 𝑘 ∈ 𝐵 , ∅ ∈ ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) } ) |
5 |
|
ssrab2 |
⊢ { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘 ∈ 𝐴 , 𝑘 ∈ 𝐵 , ∅ ∈ ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) } ⊆ ℕ0 |
6 |
4 5
|
eqsstrdi |
⊢ ( ( 𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0 ) → ( 𝐴 sadd 𝐵 ) ⊆ ℕ0 ) |