| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							saddisj.1 | 
							⊢ ( 𝜑  →  𝐴  ⊆  ℕ0 )  | 
						
						
							| 2 | 
							
								
							 | 
							saddisj.2 | 
							⊢ ( 𝜑  →  𝐵  ⊆  ℕ0 )  | 
						
						
							| 3 | 
							
								
							 | 
							saddisj.3 | 
							⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  =  ∅ )  | 
						
						
							| 4 | 
							
								
							 | 
							sadcl | 
							⊢ ( ( 𝐴  ⊆  ℕ0  ∧  𝐵  ⊆  ℕ0 )  →  ( 𝐴  sadd  𝐵 )  ⊆  ℕ0 )  | 
						
						
							| 5 | 
							
								1 2 4
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐴  sadd  𝐵 )  ⊆  ℕ0 )  | 
						
						
							| 6 | 
							
								5
							 | 
							sseld | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐴  sadd  𝐵 )  →  𝑘  ∈  ℕ0 ) )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							unssd | 
							⊢ ( 𝜑  →  ( 𝐴  ∪  𝐵 )  ⊆  ℕ0 )  | 
						
						
							| 8 | 
							
								7
							 | 
							sseld | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐴  ∪  𝐵 )  →  𝑘  ∈  ℕ0 ) )  | 
						
						
							| 9 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐴  ⊆  ℕ0 )  | 
						
						
							| 10 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐵  ⊆  ℕ0 )  | 
						
						
							| 11 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴  ∩  𝐵 )  =  ∅ )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ seq 0 ( ( 𝑐  ∈  2o ,  𝑚  ∈  ℕ0  ↦  if ( cadd ( 𝑚  ∈  𝐴 ,  𝑚  ∈  𝐵 ,  ∅  ∈  𝑐 ) ,  1o ,  ∅ ) ) ,  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,  ∅ ,  ( 𝑥  −  1 ) ) ) )  =  seq 0 ( ( 𝑐  ∈  2o ,  𝑚  ∈  ℕ0  ↦  if ( cadd ( 𝑚  ∈  𝐴 ,  𝑚  ∈  𝐵 ,  ∅  ∈  𝑐 ) ,  1o ,  ∅ ) ) ,  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,  ∅ ,  ( 𝑥  −  1 ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 14 | 
							
								9 10 11 12 13
							 | 
							saddisjlem | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ∈  ( 𝐴  sadd  𝐵 )  ↔  𝑘  ∈  ( 𝐴  ∪  𝐵 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ0  →  ( 𝑘  ∈  ( 𝐴  sadd  𝐵 )  ↔  𝑘  ∈  ( 𝐴  ∪  𝐵 ) ) ) )  | 
						
						
							| 16 | 
							
								6 8 15
							 | 
							pm5.21ndd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐴  sadd  𝐵 )  ↔  𝑘  ∈  ( 𝐴  ∪  𝐵 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqrdv | 
							⊢ ( 𝜑  →  ( 𝐴  sadd  𝐵 )  =  ( 𝐴  ∪  𝐵 ) )  |