| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satfv1fvfmla1.x | ⊢ 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) | 
						
							| 2 | 1 | ovexi | ⊢ 𝑋  ∈  V | 
						
							| 3 | 2 | jctr | ⊢ ( 𝑀  ∈  𝑉  →  ( 𝑀  ∈  𝑉  ∧  𝑋  ∈  V ) ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 𝑀  ∈  𝑉  ∧  𝑋  ∈  V ) ) | 
						
							| 5 |  | satefv | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝑋  ∈  V )  →  ( 𝑀  Sat∈  𝑋 )  =  ( ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ ω ) ‘ 𝑋 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 𝑀  Sat∈  𝑋 )  =  ( ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ ω ) ‘ 𝑋 ) ) | 
						
							| 7 |  | sqxpexg | ⊢ ( 𝑀  ∈  𝑉  →  ( 𝑀  ×  𝑀 )  ∈  V ) | 
						
							| 8 |  | inex2g | ⊢ ( ( 𝑀  ×  𝑀 )  ∈  V  →  (  E   ∩  ( 𝑀  ×  𝑀 ) )  ∈  V ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑀  ∈  𝑉  →  (  E   ∩  ( 𝑀  ×  𝑀 ) )  ∈  V ) | 
						
							| 10 | 9 | ancli | ⊢ ( 𝑀  ∈  𝑉  →  ( 𝑀  ∈  𝑉  ∧  (  E   ∩  ( 𝑀  ×  𝑀 ) )  ∈  V ) ) | 
						
							| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 𝑀  ∈  𝑉  ∧  (  E   ∩  ( 𝑀  ×  𝑀 ) )  ∈  V ) ) | 
						
							| 12 |  | satom | ⊢ ( ( 𝑀  ∈  𝑉  ∧  (  E   ∩  ( 𝑀  ×  𝑀 ) )  ∈  V )  →  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ ω )  =  ∪  𝑖  ∈  ω ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 𝑖 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ ω )  =  ∪  𝑖  ∈  ω ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 𝑖 ) ) | 
						
							| 14 | 13 | fveq1d | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ ω ) ‘ 𝑋 )  =  ( ∪  𝑖  ∈  ω ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 𝑖 ) ‘ 𝑋 ) ) | 
						
							| 15 |  | satfun | ⊢ ( ( 𝑀  ∈  𝑉  ∧  (  E   ∩  ( 𝑀  ×  𝑀 ) )  ∈  V )  →  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 16 | 11 15 | syl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 17 | 16 | ffund | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  Fun  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ ω ) ) | 
						
							| 18 | 13 | eqcomd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ∪  𝑖  ∈  ω ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 𝑖 )  =  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ ω ) ) | 
						
							| 19 | 18 | funeqd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( Fun  ∪  𝑖  ∈  ω ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 𝑖 )  ↔  Fun  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ ω ) ) ) | 
						
							| 20 | 17 19 | mpbird | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  Fun  ∪  𝑖  ∈  ω ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 𝑖 ) ) | 
						
							| 21 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  1o  ∈  ω ) | 
						
							| 23 | 1 | 2goelgoanfmla1 | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝑋  ∈  ( Fmla ‘ 1o ) ) | 
						
							| 24 | 23 | 3adant1 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝑋  ∈  ( Fmla ‘ 1o ) ) | 
						
							| 25 | 21 | a1i | ⊢ ( 𝑀  ∈  𝑉  →  1o  ∈  ω ) | 
						
							| 26 |  | satfdmfmla | ⊢ ( ( 𝑀  ∈  𝑉  ∧  (  E   ∩  ( 𝑀  ×  𝑀 ) )  ∈  V  ∧  1o  ∈  ω )  →  dom  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 1o )  =  ( Fmla ‘ 1o ) ) | 
						
							| 27 | 9 25 26 | mpd3an23 | ⊢ ( 𝑀  ∈  𝑉  →  dom  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 1o )  =  ( Fmla ‘ 1o ) ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  dom  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 1o )  =  ( Fmla ‘ 1o ) ) | 
						
							| 29 | 24 28 | eleqtrrd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝑋  ∈  dom  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 1o ) ) | 
						
							| 30 |  | eqid | ⊢ ∪  𝑖  ∈  ω ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 𝑖 )  =  ∪  𝑖  ∈  ω ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 𝑖 ) | 
						
							| 31 | 30 | fviunfun | ⊢ ( ( Fun  ∪  𝑖  ∈  ω ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 𝑖 )  ∧  1o  ∈  ω  ∧  𝑋  ∈  dom  ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 1o ) )  →  ( ∪  𝑖  ∈  ω ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 𝑖 ) ‘ 𝑋 )  =  ( ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) ) | 
						
							| 32 | 20 22 29 31 | syl3anc | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( ∪  𝑖  ∈  ω ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 𝑖 ) ‘ 𝑋 )  =  ( ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) ) | 
						
							| 33 | 14 32 | eqtrd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ ω ) ‘ 𝑋 )  =  ( ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) ) | 
						
							| 34 | 1 | satfv1fvfmla1 | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  (  E   ∩  ( 𝑀  ×  𝑀 ) )  ∈  V )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 )  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ) } ) | 
						
							| 35 | 10 34 | syl3an1 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 )  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ) } ) | 
						
							| 36 |  | brin | ⊢ ( ( 𝑎 ‘ 𝐼 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐽 )  ↔  ( ( 𝑎 ‘ 𝐼 )  E  ( 𝑎 ‘ 𝐽 )  ∧  ( 𝑎 ‘ 𝐼 ) ( 𝑀  ×  𝑀 ) ( 𝑎 ‘ 𝐽 ) ) ) | 
						
							| 37 |  | elmapi | ⊢ ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  𝑎 : ω ⟶ 𝑀 ) | 
						
							| 38 |  | ffvelcdm | ⊢ ( ( 𝑎 : ω ⟶ 𝑀  ∧  𝐼  ∈  ω )  →  ( 𝑎 ‘ 𝐼 )  ∈  𝑀 ) | 
						
							| 39 | 38 | ex | ⊢ ( 𝑎 : ω ⟶ 𝑀  →  ( 𝐼  ∈  ω  →  ( 𝑎 ‘ 𝐼 )  ∈  𝑀 ) ) | 
						
							| 40 | 37 39 | syl | ⊢ ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  ( 𝐼  ∈  ω  →  ( 𝑎 ‘ 𝐼 )  ∈  𝑀 ) ) | 
						
							| 41 |  | ffvelcdm | ⊢ ( ( 𝑎 : ω ⟶ 𝑀  ∧  𝐽  ∈  ω )  →  ( 𝑎 ‘ 𝐽 )  ∈  𝑀 ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝑎 : ω ⟶ 𝑀  →  ( 𝐽  ∈  ω  →  ( 𝑎 ‘ 𝐽 )  ∈  𝑀 ) ) | 
						
							| 43 | 37 42 | syl | ⊢ ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  ( 𝐽  ∈  ω  →  ( 𝑎 ‘ 𝐽 )  ∈  𝑀 ) ) | 
						
							| 44 | 40 43 | anim12d | ⊢ ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( ( 𝑎 ‘ 𝐼 )  ∈  𝑀  ∧  ( 𝑎 ‘ 𝐽 )  ∈  𝑀 ) ) ) | 
						
							| 45 | 44 | com12 | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  ( ( 𝑎 ‘ 𝐼 )  ∈  𝑀  ∧  ( 𝑎 ‘ 𝐽 )  ∈  𝑀 ) ) ) | 
						
							| 46 | 45 | 3ad2ant2 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  ( ( 𝑎 ‘ 𝐼 )  ∈  𝑀  ∧  ( 𝑎 ‘ 𝐽 )  ∈  𝑀 ) ) ) | 
						
							| 47 | 46 | imp | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( ( 𝑎 ‘ 𝐼 )  ∈  𝑀  ∧  ( 𝑎 ‘ 𝐽 )  ∈  𝑀 ) ) | 
						
							| 48 |  | brxp | ⊢ ( ( 𝑎 ‘ 𝐼 ) ( 𝑀  ×  𝑀 ) ( 𝑎 ‘ 𝐽 )  ↔  ( ( 𝑎 ‘ 𝐼 )  ∈  𝑀  ∧  ( 𝑎 ‘ 𝐽 )  ∈  𝑀 ) ) | 
						
							| 49 | 47 48 | sylibr | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( 𝑎 ‘ 𝐼 ) ( 𝑀  ×  𝑀 ) ( 𝑎 ‘ 𝐽 ) ) | 
						
							| 50 | 49 | biantrud | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( ( 𝑎 ‘ 𝐼 )  E  ( 𝑎 ‘ 𝐽 )  ↔  ( ( 𝑎 ‘ 𝐼 )  E  ( 𝑎 ‘ 𝐽 )  ∧  ( 𝑎 ‘ 𝐼 ) ( 𝑀  ×  𝑀 ) ( 𝑎 ‘ 𝐽 ) ) ) ) | 
						
							| 51 |  | fvex | ⊢ ( 𝑎 ‘ 𝐽 )  ∈  V | 
						
							| 52 | 51 | epeli | ⊢ ( ( 𝑎 ‘ 𝐼 )  E  ( 𝑎 ‘ 𝐽 )  ↔  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) ) | 
						
							| 53 | 50 52 | bitr3di | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( ( ( 𝑎 ‘ 𝐼 )  E  ( 𝑎 ‘ 𝐽 )  ∧  ( 𝑎 ‘ 𝐼 ) ( 𝑀  ×  𝑀 ) ( 𝑎 ‘ 𝐽 ) )  ↔  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) ) ) | 
						
							| 54 | 36 53 | bitrid | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( ( 𝑎 ‘ 𝐼 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐽 )  ↔  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) ) ) | 
						
							| 55 | 54 | notbid | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( ¬  ( 𝑎 ‘ 𝐼 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐽 )  ↔  ¬  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) ) ) | 
						
							| 56 |  | brin | ⊢ ( ( 𝑎 ‘ 𝐾 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐿 )  ↔  ( ( 𝑎 ‘ 𝐾 )  E  ( 𝑎 ‘ 𝐿 )  ∧  ( 𝑎 ‘ 𝐾 ) ( 𝑀  ×  𝑀 ) ( 𝑎 ‘ 𝐿 ) ) ) | 
						
							| 57 |  | ffvelcdm | ⊢ ( ( 𝑎 : ω ⟶ 𝑀  ∧  𝐾  ∈  ω )  →  ( 𝑎 ‘ 𝐾 )  ∈  𝑀 ) | 
						
							| 58 | 57 | ex | ⊢ ( 𝑎 : ω ⟶ 𝑀  →  ( 𝐾  ∈  ω  →  ( 𝑎 ‘ 𝐾 )  ∈  𝑀 ) ) | 
						
							| 59 | 37 58 | syl | ⊢ ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  ( 𝐾  ∈  ω  →  ( 𝑎 ‘ 𝐾 )  ∈  𝑀 ) ) | 
						
							| 60 |  | ffvelcdm | ⊢ ( ( 𝑎 : ω ⟶ 𝑀  ∧  𝐿  ∈  ω )  →  ( 𝑎 ‘ 𝐿 )  ∈  𝑀 ) | 
						
							| 61 | 60 | ex | ⊢ ( 𝑎 : ω ⟶ 𝑀  →  ( 𝐿  ∈  ω  →  ( 𝑎 ‘ 𝐿 )  ∈  𝑀 ) ) | 
						
							| 62 | 37 61 | syl | ⊢ ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  ( 𝐿  ∈  ω  →  ( 𝑎 ‘ 𝐿 )  ∈  𝑀 ) ) | 
						
							| 63 | 59 62 | anim12d | ⊢ ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  ( ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω )  →  ( ( 𝑎 ‘ 𝐾 )  ∈  𝑀  ∧  ( 𝑎 ‘ 𝐿 )  ∈  𝑀 ) ) ) | 
						
							| 64 | 63 | com12 | ⊢ ( ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω )  →  ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  ( ( 𝑎 ‘ 𝐾 )  ∈  𝑀  ∧  ( 𝑎 ‘ 𝐿 )  ∈  𝑀 ) ) ) | 
						
							| 65 | 64 | 3ad2ant3 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  ( ( 𝑎 ‘ 𝐾 )  ∈  𝑀  ∧  ( 𝑎 ‘ 𝐿 )  ∈  𝑀 ) ) ) | 
						
							| 66 | 65 | imp | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( ( 𝑎 ‘ 𝐾 )  ∈  𝑀  ∧  ( 𝑎 ‘ 𝐿 )  ∈  𝑀 ) ) | 
						
							| 67 |  | brxp | ⊢ ( ( 𝑎 ‘ 𝐾 ) ( 𝑀  ×  𝑀 ) ( 𝑎 ‘ 𝐿 )  ↔  ( ( 𝑎 ‘ 𝐾 )  ∈  𝑀  ∧  ( 𝑎 ‘ 𝐿 )  ∈  𝑀 ) ) | 
						
							| 68 | 66 67 | sylibr | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( 𝑎 ‘ 𝐾 ) ( 𝑀  ×  𝑀 ) ( 𝑎 ‘ 𝐿 ) ) | 
						
							| 69 | 68 | biantrud | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( ( 𝑎 ‘ 𝐾 )  E  ( 𝑎 ‘ 𝐿 )  ↔  ( ( 𝑎 ‘ 𝐾 )  E  ( 𝑎 ‘ 𝐿 )  ∧  ( 𝑎 ‘ 𝐾 ) ( 𝑀  ×  𝑀 ) ( 𝑎 ‘ 𝐿 ) ) ) ) | 
						
							| 70 |  | fvex | ⊢ ( 𝑎 ‘ 𝐿 )  ∈  V | 
						
							| 71 | 70 | epeli | ⊢ ( ( 𝑎 ‘ 𝐾 )  E  ( 𝑎 ‘ 𝐿 )  ↔  ( 𝑎 ‘ 𝐾 )  ∈  ( 𝑎 ‘ 𝐿 ) ) | 
						
							| 72 | 69 71 | bitr3di | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( ( ( 𝑎 ‘ 𝐾 )  E  ( 𝑎 ‘ 𝐿 )  ∧  ( 𝑎 ‘ 𝐾 ) ( 𝑀  ×  𝑀 ) ( 𝑎 ‘ 𝐿 ) )  ↔  ( 𝑎 ‘ 𝐾 )  ∈  ( 𝑎 ‘ 𝐿 ) ) ) | 
						
							| 73 | 56 72 | bitrid | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( ( 𝑎 ‘ 𝐾 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐿 )  ↔  ( 𝑎 ‘ 𝐾 )  ∈  ( 𝑎 ‘ 𝐿 ) ) ) | 
						
							| 74 | 73 | notbid | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( ¬  ( 𝑎 ‘ 𝐾 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐿 )  ↔  ¬  ( 𝑎 ‘ 𝐾 )  ∈  ( 𝑎 ‘ 𝐿 ) ) ) | 
						
							| 75 | 55 74 | orbi12d | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑎  ∈  ( 𝑀  ↑m  ω ) )  →  ( ( ¬  ( 𝑎 ‘ 𝐼 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐿 ) )  ↔  ( ¬  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 )  ∈  ( 𝑎 ‘ 𝐿 ) ) ) ) | 
						
							| 76 | 75 | rabbidva | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) (  E   ∩  ( 𝑀  ×  𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 )  ∈  ( 𝑎 ‘ 𝐿 ) ) } ) | 
						
							| 77 | 35 76 | eqtrd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( ( ( 𝑀  Sat  (  E   ∩  ( 𝑀  ×  𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 )  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 )  ∈  ( 𝑎 ‘ 𝐿 ) ) } ) | 
						
							| 78 | 6 33 77 | 3eqtrd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 𝑀  Sat∈  𝑋 )  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 )  ∈  ( 𝑎 ‘ 𝐿 ) ) } ) |