Step |
Hyp |
Ref |
Expression |
1 |
|
satfv1fvfmla1.x |
⊢ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) |
2 |
1
|
ovexi |
⊢ 𝑋 ∈ V |
3 |
2
|
jctr |
⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ 𝑉 ∧ 𝑋 ∈ V ) ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝑋 ∈ V ) ) |
5 |
|
satefv |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑋 ∈ V ) → ( 𝑀 Sat∈ 𝑋 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑋 ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀 Sat∈ 𝑋 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑋 ) ) |
7 |
|
sqxpexg |
⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 × 𝑀 ) ∈ V ) |
8 |
|
inex2g |
⊢ ( ( 𝑀 × 𝑀 ) ∈ V → ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) |
9 |
7 8
|
syl |
⊢ ( 𝑀 ∈ 𝑉 → ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) |
10 |
9
|
ancli |
⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ) |
12 |
|
satom |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) → ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) = ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) = ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ) |
14 |
13
|
fveq1d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑋 ) = ( ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ‘ 𝑋 ) ) |
15 |
|
satfun |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) → ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) |
16 |
11 15
|
syl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) |
17 |
16
|
ffund |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → Fun ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ) |
18 |
13
|
eqcomd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) = ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ) |
19 |
18
|
funeqd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( Fun ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ↔ Fun ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ) ) |
20 |
17 19
|
mpbird |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → Fun ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ) |
21 |
|
1onn |
⊢ 1o ∈ ω |
22 |
21
|
a1i |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 1o ∈ ω ) |
23 |
1
|
2goelgoanfmla1 |
⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ ( Fmla ‘ 1o ) ) |
24 |
23
|
3adant1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ ( Fmla ‘ 1o ) ) |
25 |
21
|
a1i |
⊢ ( 𝑀 ∈ 𝑉 → 1o ∈ ω ) |
26 |
|
satfdmfmla |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ∧ 1o ∈ ω ) → dom ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) = ( Fmla ‘ 1o ) ) |
27 |
9 25 26
|
mpd3an23 |
⊢ ( 𝑀 ∈ 𝑉 → dom ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) = ( Fmla ‘ 1o ) ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → dom ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) = ( Fmla ‘ 1o ) ) |
29 |
24 28
|
eleqtrrd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ dom ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ) |
30 |
|
eqid |
⊢ ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) = ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) |
31 |
30
|
fviunfun |
⊢ ( ( Fun ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ∧ 1o ∈ ω ∧ 𝑋 ∈ dom ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ) → ( ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ‘ 𝑋 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) ) |
32 |
20 22 29 31
|
syl3anc |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ‘ 𝑋 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) ) |
33 |
14 32
|
eqtrd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑋 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) ) |
34 |
1
|
satfv1fvfmla1 |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ) } ) |
35 |
10 34
|
syl3an1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ) } ) |
36 |
|
brin |
⊢ ( ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ↔ ( ( 𝑎 ‘ 𝐼 ) E ( 𝑎 ‘ 𝐽 ) ∧ ( 𝑎 ‘ 𝐼 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐽 ) ) ) |
37 |
|
elmapi |
⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → 𝑎 : ω ⟶ 𝑀 ) |
38 |
|
ffvelrn |
⊢ ( ( 𝑎 : ω ⟶ 𝑀 ∧ 𝐼 ∈ ω ) → ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ) |
39 |
38
|
ex |
⊢ ( 𝑎 : ω ⟶ 𝑀 → ( 𝐼 ∈ ω → ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ) ) |
40 |
37 39
|
syl |
⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( 𝐼 ∈ ω → ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ) ) |
41 |
|
ffvelrn |
⊢ ( ( 𝑎 : ω ⟶ 𝑀 ∧ 𝐽 ∈ ω ) → ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) |
42 |
41
|
ex |
⊢ ( 𝑎 : ω ⟶ 𝑀 → ( 𝐽 ∈ ω → ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) |
43 |
37 42
|
syl |
⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( 𝐽 ∈ ω → ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) |
44 |
40 43
|
anim12d |
⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) ) |
45 |
44
|
com12 |
⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) ) |
46 |
45
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) ) |
47 |
46
|
imp |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) |
48 |
|
brxp |
⊢ ( ( 𝑎 ‘ 𝐼 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐽 ) ↔ ( ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) |
49 |
47 48
|
sylibr |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( 𝑎 ‘ 𝐼 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐽 ) ) |
50 |
49
|
biantrud |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐼 ) E ( 𝑎 ‘ 𝐽 ) ↔ ( ( 𝑎 ‘ 𝐼 ) E ( 𝑎 ‘ 𝐽 ) ∧ ( 𝑎 ‘ 𝐼 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐽 ) ) ) ) |
51 |
|
fvex |
⊢ ( 𝑎 ‘ 𝐽 ) ∈ V |
52 |
51
|
epeli |
⊢ ( ( 𝑎 ‘ 𝐼 ) E ( 𝑎 ‘ 𝐽 ) ↔ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) |
53 |
50 52
|
bitr3di |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( ( 𝑎 ‘ 𝐼 ) E ( 𝑎 ‘ 𝐽 ) ∧ ( 𝑎 ‘ 𝐼 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐽 ) ) ↔ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) ) |
54 |
36 53
|
syl5bb |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ↔ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) ) |
55 |
54
|
notbid |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ¬ ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ↔ ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) ) |
56 |
|
brin |
⊢ ( ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ↔ ( ( 𝑎 ‘ 𝐾 ) E ( 𝑎 ‘ 𝐿 ) ∧ ( 𝑎 ‘ 𝐾 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐿 ) ) ) |
57 |
|
ffvelrn |
⊢ ( ( 𝑎 : ω ⟶ 𝑀 ∧ 𝐾 ∈ ω ) → ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ) |
58 |
57
|
ex |
⊢ ( 𝑎 : ω ⟶ 𝑀 → ( 𝐾 ∈ ω → ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ) ) |
59 |
37 58
|
syl |
⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( 𝐾 ∈ ω → ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ) ) |
60 |
|
ffvelrn |
⊢ ( ( 𝑎 : ω ⟶ 𝑀 ∧ 𝐿 ∈ ω ) → ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) |
61 |
60
|
ex |
⊢ ( 𝑎 : ω ⟶ 𝑀 → ( 𝐿 ∈ ω → ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) |
62 |
37 61
|
syl |
⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( 𝐿 ∈ ω → ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) |
63 |
59 62
|
anim12d |
⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) → ( ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) ) |
64 |
63
|
com12 |
⊢ ( ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) → ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) ) |
65 |
64
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) ) |
66 |
65
|
imp |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) |
67 |
|
brxp |
⊢ ( ( 𝑎 ‘ 𝐾 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐿 ) ↔ ( ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) |
68 |
66 67
|
sylibr |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( 𝑎 ‘ 𝐾 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐿 ) ) |
69 |
68
|
biantrud |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐾 ) E ( 𝑎 ‘ 𝐿 ) ↔ ( ( 𝑎 ‘ 𝐾 ) E ( 𝑎 ‘ 𝐿 ) ∧ ( 𝑎 ‘ 𝐾 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐿 ) ) ) ) |
70 |
|
fvex |
⊢ ( 𝑎 ‘ 𝐿 ) ∈ V |
71 |
70
|
epeli |
⊢ ( ( 𝑎 ‘ 𝐾 ) E ( 𝑎 ‘ 𝐿 ) ↔ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) |
72 |
69 71
|
bitr3di |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( ( 𝑎 ‘ 𝐾 ) E ( 𝑎 ‘ 𝐿 ) ∧ ( 𝑎 ‘ 𝐾 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐿 ) ) ↔ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) ) |
73 |
56 72
|
syl5bb |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ↔ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) ) |
74 |
73
|
notbid |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ¬ ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ↔ ¬ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) ) |
75 |
55 74
|
orbi12d |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( ¬ ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) ) ) |
76 |
75
|
rabbidva |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) } ) |
77 |
35 76
|
eqtrd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) } ) |
78 |
6 33 77
|
3eqtrd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀 Sat∈ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) } ) |