| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sategoelfvb.s | ⊢ 𝐸  =  ( 𝑀  Sat∈  ( 𝐴 ∈𝑔 𝐵 ) ) | 
						
							| 2 |  | ovexd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴 ∈𝑔 𝐵 )  ∈  V ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  𝐴  ∈  ω ) | 
						
							| 4 |  | opeq1 | ⊢ ( 𝑎  =  𝐴  →  〈 𝑎 ,  𝑏 〉  =  〈 𝐴 ,  𝑏 〉 ) | 
						
							| 5 | 4 | opeq2d | ⊢ ( 𝑎  =  𝐴  →  〈 ∅ ,  〈 𝑎 ,  𝑏 〉 〉  =  〈 ∅ ,  〈 𝐴 ,  𝑏 〉 〉 ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( 𝑎  =  𝐴  →  ( 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝑎 ,  𝑏 〉 〉  ↔  〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝐴 ,  𝑏 〉 〉 ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝑎  =  𝐴  →  ( ∃ 𝑏  ∈  ω 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝑎 ,  𝑏 〉 〉  ↔  ∃ 𝑏  ∈  ω 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝐴 ,  𝑏 〉 〉 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  𝑎  =  𝐴 )  →  ( ∃ 𝑏  ∈  ω 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝑎 ,  𝑏 〉 〉  ↔  ∃ 𝑏  ∈  ω 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝐴 ,  𝑏 〉 〉 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  𝐵  ∈  ω ) | 
						
							| 10 |  | opeq2 | ⊢ ( 𝑏  =  𝐵  →  〈 𝐴 ,  𝑏 〉  =  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 11 | 10 | opeq2d | ⊢ ( 𝑏  =  𝐵  →  〈 ∅ ,  〈 𝐴 ,  𝑏 〉 〉  =  〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) | 
						
							| 12 | 11 | eqeq2d | ⊢ ( 𝑏  =  𝐵  →  ( 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝐴 ,  𝑏 〉 〉  ↔  〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  𝑏  =  𝐵 )  →  ( 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝐴 ,  𝑏 〉 〉  ↔  〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) ) | 
						
							| 14 |  | eqidd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) | 
						
							| 15 | 9 13 14 | rspcedvd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ∃ 𝑏  ∈  ω 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝐴 ,  𝑏 〉 〉 ) | 
						
							| 16 | 3 8 15 | rspcedvd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ∃ 𝑎  ∈  ω ∃ 𝑏  ∈  ω 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝑎 ,  𝑏 〉 〉 ) | 
						
							| 17 |  | goel | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴 ∈𝑔 𝐵 )  =  〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) | 
						
							| 18 |  | goel | ⊢ ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( 𝑎 ∈𝑔 𝑏 )  =  〈 ∅ ,  〈 𝑎 ,  𝑏 〉 〉 ) | 
						
							| 19 | 17 18 | eqeqan12d | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω ) )  →  ( ( 𝐴 ∈𝑔 𝐵 )  =  ( 𝑎 ∈𝑔 𝑏 )  ↔  〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝑎 ,  𝑏 〉 〉 ) ) | 
						
							| 20 | 19 | 2rexbidva | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ∃ 𝑎  ∈  ω ∃ 𝑏  ∈  ω ( 𝐴 ∈𝑔 𝐵 )  =  ( 𝑎 ∈𝑔 𝑏 )  ↔  ∃ 𝑎  ∈  ω ∃ 𝑏  ∈  ω 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉  =  〈 ∅ ,  〈 𝑎 ,  𝑏 〉 〉 ) ) | 
						
							| 21 | 16 20 | mpbird | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ∃ 𝑎  ∈  ω ∃ 𝑏  ∈  ω ( 𝐴 ∈𝑔 𝐵 )  =  ( 𝑎 ∈𝑔 𝑏 ) ) | 
						
							| 22 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝐴 ∈𝑔 𝐵 )  →  ( 𝑥  =  ( 𝑎 ∈𝑔 𝑏 )  ↔  ( 𝐴 ∈𝑔 𝐵 )  =  ( 𝑎 ∈𝑔 𝑏 ) ) ) | 
						
							| 23 | 22 | 2rexbidv | ⊢ ( 𝑥  =  ( 𝐴 ∈𝑔 𝐵 )  →  ( ∃ 𝑎  ∈  ω ∃ 𝑏  ∈  ω 𝑥  =  ( 𝑎 ∈𝑔 𝑏 )  ↔  ∃ 𝑎  ∈  ω ∃ 𝑏  ∈  ω ( 𝐴 ∈𝑔 𝐵 )  =  ( 𝑎 ∈𝑔 𝑏 ) ) ) | 
						
							| 24 |  | fmla0 | ⊢ ( Fmla ‘ ∅ )  =  { 𝑥  ∈  V  ∣  ∃ 𝑎  ∈  ω ∃ 𝑏  ∈  ω 𝑥  =  ( 𝑎 ∈𝑔 𝑏 ) } | 
						
							| 25 | 23 24 | elrab2 | ⊢ ( ( 𝐴 ∈𝑔 𝐵 )  ∈  ( Fmla ‘ ∅ )  ↔  ( ( 𝐴 ∈𝑔 𝐵 )  ∈  V  ∧  ∃ 𝑎  ∈  ω ∃ 𝑏  ∈  ω ( 𝐴 ∈𝑔 𝐵 )  =  ( 𝑎 ∈𝑔 𝑏 ) ) ) | 
						
							| 26 | 2 21 25 | sylanbrc | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴 ∈𝑔 𝐵 )  ∈  ( Fmla ‘ ∅ ) ) | 
						
							| 27 |  | satefvfmla0 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐴 ∈𝑔 𝐵 )  ∈  ( Fmla ‘ ∅ ) )  →  ( 𝑀  Sat∈  ( 𝐴 ∈𝑔 𝐵 ) )  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) } ) | 
						
							| 28 | 26 27 | sylan2 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝑀  Sat∈  ( 𝐴 ∈𝑔 𝐵 ) )  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) } ) | 
						
							| 29 | 1 28 | eqtrid | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  𝐸  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) } ) | 
						
							| 30 | 29 | eleq2d | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝑆  ∈  𝐸  ↔  𝑆  ∈  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) } ) ) | 
						
							| 31 |  | fveq1 | ⊢ ( 𝑎  =  𝑆  →  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  =  ( 𝑆 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ) | 
						
							| 32 |  | fveq1 | ⊢ ( 𝑎  =  𝑆  →  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  =  ( 𝑆 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ) | 
						
							| 33 | 31 32 | eleq12d | ⊢ ( 𝑎  =  𝑆  →  ( ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ↔  ( 𝑆 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑆 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ) ) | 
						
							| 34 | 33 | elrab | ⊢ ( 𝑆  ∈  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) }  ↔  ( 𝑆  ∈  ( 𝑀  ↑m  ω )  ∧  ( 𝑆 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑆 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ) ) | 
						
							| 35 | 30 34 | bitrdi | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝑆  ∈  𝐸  ↔  ( 𝑆  ∈  ( 𝑀  ↑m  ω )  ∧  ( 𝑆 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑆 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ) ) ) | 
						
							| 36 | 17 | fveq2d | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) )  =  ( 2nd  ‘ 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) ) | 
						
							| 37 | 36 | fveq2d | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) )  =  ( 1st  ‘ ( 2nd  ‘ 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) ) ) | 
						
							| 38 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 39 |  | opex | ⊢ 〈 𝐴 ,  𝐵 〉  ∈  V | 
						
							| 40 | 38 39 | op2nd | ⊢ ( 2nd  ‘ 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 )  =  〈 𝐴 ,  𝐵 〉 | 
						
							| 41 | 40 | fveq2i | ⊢ ( 1st  ‘ ( 2nd  ‘ 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) )  =  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) | 
						
							| 42 |  | op1stg | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐴 ) | 
						
							| 43 | 41 42 | eqtrid | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 1st  ‘ ( 2nd  ‘ 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) )  =  𝐴 ) | 
						
							| 44 | 37 43 | eqtrd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) )  =  𝐴 ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝑆 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  =  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 46 | 36 | fveq2d | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) )  =  ( 2nd  ‘ ( 2nd  ‘ 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) ) ) | 
						
							| 47 | 40 | fveq2i | ⊢ ( 2nd  ‘ ( 2nd  ‘ 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) )  =  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) | 
						
							| 48 |  | op2ndg | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 49 | 47 48 | eqtrid | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 2nd  ‘ ( 2nd  ‘ 〈 ∅ ,  〈 𝐴 ,  𝐵 〉 〉 ) )  =  𝐵 ) | 
						
							| 50 | 46 49 | eqtrd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) )  =  𝐵 ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝑆 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  =  ( 𝑆 ‘ 𝐵 ) ) | 
						
							| 52 | 45 51 | eleq12d | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ( 𝑆 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑆 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ↔  ( 𝑆 ‘ 𝐴 )  ∈  ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( ( 𝑆 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑆 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ↔  ( 𝑆 ‘ 𝐴 )  ∈  ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 54 | 53 | anbi2d | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( ( 𝑆  ∈  ( 𝑀  ↑m  ω )  ∧  ( 𝑆 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) )  ∈  ( 𝑆 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) )  ↔  ( 𝑆  ∈  ( 𝑀  ↑m  ω )  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ( 𝑆 ‘ 𝐵 ) ) ) ) | 
						
							| 55 | 35 54 | bitrd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝑆  ∈  𝐸  ↔  ( 𝑆  ∈  ( 𝑀  ↑m  ω )  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ( 𝑆 ‘ 𝐵 ) ) ) ) |