Metamath Proof Explorer


Theorem satf0suclem

Description: Lemma for satf0suc , sat1el2xp and fmlasuc0 . (Contributed by AV, 19-Sep-2023)

Ref Expression
Assertion satf0suclem ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) } ∈ V )

Proof

Step Hyp Ref Expression
1 peano1 ∅ ∈ ω
2 eleq1 ( 𝑦 = ∅ → ( 𝑦 ∈ ω ↔ ∅ ∈ ω ) )
3 1 2 mpbiri ( 𝑦 = ∅ → 𝑦 ∈ ω )
4 3 adantr ( ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) → 𝑦 ∈ ω )
5 4 pm4.71ri ( ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) ↔ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) ) )
6 5 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) ) }
7 omex ω ∈ V
8 7 a1i ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → ω ∈ V )
9 simp1 ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → 𝑋𝑈 )
10 unab ( { 𝑥 ∣ ∃ 𝑣𝑌 𝑥 = 𝐵 } ∪ { 𝑥 ∣ ∃ 𝑤𝑍 𝑥 = 𝐶 } ) = { 𝑥 ∣ ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) }
11 abrexexg ( 𝑌𝑉 → { 𝑥 ∣ ∃ 𝑣𝑌 𝑥 = 𝐵 } ∈ V )
12 11 3ad2ant2 ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → { 𝑥 ∣ ∃ 𝑣𝑌 𝑥 = 𝐵 } ∈ V )
13 abrexexg ( 𝑍𝑊 → { 𝑥 ∣ ∃ 𝑤𝑍 𝑥 = 𝐶 } ∈ V )
14 13 3ad2ant3 ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → { 𝑥 ∣ ∃ 𝑤𝑍 𝑥 = 𝐶 } ∈ V )
15 unexg ( ( { 𝑥 ∣ ∃ 𝑣𝑌 𝑥 = 𝐵 } ∈ V ∧ { 𝑥 ∣ ∃ 𝑤𝑍 𝑥 = 𝐶 } ∈ V ) → ( { 𝑥 ∣ ∃ 𝑣𝑌 𝑥 = 𝐵 } ∪ { 𝑥 ∣ ∃ 𝑤𝑍 𝑥 = 𝐶 } ) ∈ V )
16 12 14 15 syl2anc ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → ( { 𝑥 ∣ ∃ 𝑣𝑌 𝑥 = 𝐵 } ∪ { 𝑥 ∣ ∃ 𝑤𝑍 𝑥 = 𝐶 } ) ∈ V )
17 10 16 eqeltrrid ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → { 𝑥 ∣ ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) } ∈ V )
18 17 ralrimivw ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → ∀ 𝑢𝑋 { 𝑥 ∣ ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) } ∈ V )
19 abrexex2g ( ( 𝑋𝑈 ∧ ∀ 𝑢𝑋 { 𝑥 ∣ ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) } ∈ V ) → { 𝑥 ∣ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) } ∈ V )
20 9 18 19 syl2anc ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → { 𝑥 ∣ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) } ∈ V )
21 20 adantr ( ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) ∧ 𝑦 ∈ ω ) → { 𝑥 ∣ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) } ∈ V )
22 8 21 opabex3rd ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) } ∈ V )
23 simpr ( ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) → ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) )
24 23 anim2i ( ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) ) → ( 𝑦 ∈ ω ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) )
25 24 ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) }
26 25 a1i ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) } )
27 22 26 ssexd ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) ) } ∈ V )
28 6 27 eqeltrid ( ( 𝑋𝑈𝑌𝑉𝑍𝑊 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑋 ( ∃ 𝑣𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤𝑍 𝑥 = 𝐶 ) ) } ∈ V )