Metamath Proof Explorer


Theorem satfbrsuc

Description: The binary relation of a satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 13-Oct-2023)

Ref Expression
Hypotheses satfbrsuc.s 𝑆 = ( 𝑀 Sat 𝐸 )
satfbrsuc.p 𝑃 = ( 𝑆𝑁 )
Assertion satfbrsuc ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑁 ∈ ω ∧ ( 𝐴𝑋𝐵𝑌 ) ) → ( 𝐴 ( 𝑆 ‘ suc 𝑁 ) 𝐵 ↔ ( 𝐴 𝑃 𝐵 ∨ ∃ 𝑢𝑃 ( ∃ 𝑣𝑃 ( 𝐴 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝐵 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝐴 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝐵 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) ) )

Proof

Step Hyp Ref Expression
1 satfbrsuc.s 𝑆 = ( 𝑀 Sat 𝐸 )
2 satfbrsuc.p 𝑃 = ( 𝑆𝑁 )
3 1 satfvsuc ( ( 𝑀𝑉𝐸𝑊𝑁 ∈ ω ) → ( 𝑆 ‘ suc 𝑁 ) = ( ( 𝑆𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) )
4 3 3expa ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑁 ∈ ω ) → ( 𝑆 ‘ suc 𝑁 ) = ( ( 𝑆𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) )
5 4 3adant3 ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑁 ∈ ω ∧ ( 𝐴𝑋𝐵𝑌 ) ) → ( 𝑆 ‘ suc 𝑁 ) = ( ( 𝑆𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) )
6 5 breqd ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑁 ∈ ω ∧ ( 𝐴𝑋𝐵𝑌 ) ) → ( 𝐴 ( 𝑆 ‘ suc 𝑁 ) 𝐵𝐴 ( ( 𝑆𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) 𝐵 ) )
7 brun ( 𝐴 ( ( 𝑆𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) 𝐵 ↔ ( 𝐴 ( 𝑆𝑁 ) 𝐵𝐴 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } 𝐵 ) )
8 2 eqcomi ( 𝑆𝑁 ) = 𝑃
9 8 breqi ( 𝐴 ( 𝑆𝑁 ) 𝐵𝐴 𝑃 𝐵 )
10 9 a1i ( ( 𝐴𝑋𝐵𝑌 ) → ( 𝐴 ( 𝑆𝑁 ) 𝐵𝐴 𝑃 𝐵 ) )
11 eqeq1 ( 𝑥 = 𝐴 → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ↔ 𝐴 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
12 eqeq1 ( 𝑦 = 𝐵 → ( 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ↔ 𝐵 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) )
13 11 12 bi2anan9 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ↔ ( 𝐴 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝐵 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ) )
14 13 rexbidv ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ∃ 𝑣𝑃 ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ↔ ∃ 𝑣𝑃 ( 𝐴 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝐵 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ) )
15 eqeq1 ( 𝑥 = 𝐴 → ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ↔ 𝐴 = ∀𝑔 𝑖 ( 1st𝑢 ) ) )
16 eqeq1 ( 𝑦 = 𝐵 → ( 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ↔ 𝐵 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) )
17 15 16 bi2anan9 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ↔ ( 𝐴 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝐵 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) )
18 17 rexbidv ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ↔ ∃ 𝑖 ∈ ω ( 𝐴 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝐵 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) )
19 14 18 orbi12d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( ∃ 𝑣𝑃 ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ↔ ( ∃ 𝑣𝑃 ( 𝐴 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝐵 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝐴 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝐵 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) )
20 19 rexbidv ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ∃ 𝑢𝑃 ( ∃ 𝑣𝑃 ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ↔ ∃ 𝑢𝑃 ( ∃ 𝑣𝑃 ( 𝐴 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝐵 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝐴 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝐵 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) )
21 8 rexeqi ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ↔ ∃ 𝑣𝑃 ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) )
22 21 orbi1i ( ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ↔ ( ∃ 𝑣𝑃 ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) )
23 8 22 rexeqbii ( ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ↔ ∃ 𝑢𝑃 ( ∃ 𝑣𝑃 ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) )
24 23 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝑃 ( ∃ 𝑣𝑃 ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) }
25 20 24 brabga ( ( 𝐴𝑋𝐵𝑌 ) → ( 𝐴 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } 𝐵 ↔ ∃ 𝑢𝑃 ( ∃ 𝑣𝑃 ( 𝐴 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝐵 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝐴 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝐵 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) )
26 10 25 orbi12d ( ( 𝐴𝑋𝐵𝑌 ) → ( ( 𝐴 ( 𝑆𝑁 ) 𝐵𝐴 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } 𝐵 ) ↔ ( 𝐴 𝑃 𝐵 ∨ ∃ 𝑢𝑃 ( ∃ 𝑣𝑃 ( 𝐴 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝐵 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝐴 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝐵 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) ) )
27 7 26 syl5bb ( ( 𝐴𝑋𝐵𝑌 ) → ( 𝐴 ( ( 𝑆𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) 𝐵 ↔ ( 𝐴 𝑃 𝐵 ∨ ∃ 𝑢𝑃 ( ∃ 𝑣𝑃 ( 𝐴 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝐵 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝐴 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝐵 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) ) )
28 27 3ad2ant3 ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑁 ∈ ω ∧ ( 𝐴𝑋𝐵𝑌 ) ) → ( 𝐴 ( ( 𝑆𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( 𝑆𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆𝑁 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) 𝐵 ↔ ( 𝐴 𝑃 𝐵 ∨ ∃ 𝑢𝑃 ( ∃ 𝑣𝑃 ( 𝐴 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝐵 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝐴 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝐵 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) ) )
29 6 28 bitrd ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑁 ∈ ω ∧ ( 𝐴𝑋𝐵𝑌 ) ) → ( 𝐴 ( 𝑆 ‘ suc 𝑁 ) 𝐵 ↔ ( 𝐴 𝑃 𝐵 ∨ ∃ 𝑢𝑃 ( ∃ 𝑣𝑃 ( 𝐴 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝐵 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝐴 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝐵 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) ) )