| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 | 1 1 | pm3.2i | ⊢ ( ∅  ∈  V  ∧  ∅  ∈  V ) | 
						
							| 3 | 2 | jctr | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( ∅  ∈  V  ∧  ∅  ∈  V ) ) ) | 
						
							| 4 | 3 | 3adant3 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( ∅  ∈  V  ∧  ∅  ∈  V ) ) ) | 
						
							| 5 |  | satfdm | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( ∅  ∈  V  ∧  ∅  ∈  V ) )  →  ∀ 𝑛  ∈  ω dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑛 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  ∀ 𝑛  ∈  ω dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑛 ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 )  =  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 8 | 7 | dmeqd | ⊢ ( 𝑛  =  𝑁  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 )  =  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑛  =  𝑁  →  ( ( ∅  Sat  ∅ ) ‘ 𝑛 )  =  ( ( ∅  Sat  ∅ ) ‘ 𝑁 ) ) | 
						
							| 10 | 9 | dmeqd | ⊢ ( 𝑛  =  𝑁  →  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑛 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑁 ) ) | 
						
							| 11 | 8 10 | eqeq12d | ⊢ ( 𝑛  =  𝑁  →  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑛 )  ↔  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑁 ) ) ) | 
						
							| 12 | 11 | rspcv | ⊢ ( 𝑁  ∈  ω  →  ( ∀ 𝑛  ∈  ω dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑛 )  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑁 ) ) ) | 
						
							| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  ( ∀ 𝑛  ∈  ω dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑛 )  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑁 ) ) ) | 
						
							| 14 | 6 13 | mpd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑁 ) ) | 
						
							| 15 |  | elelsuc | ⊢ ( 𝑁  ∈  ω  →  𝑁  ∈  suc  ω ) | 
						
							| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  𝑁  ∈  suc  ω ) | 
						
							| 17 |  | fmlafv | ⊢ ( 𝑁  ∈  suc  ω  →  ( Fmla ‘ 𝑁 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑁 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  ( Fmla ‘ 𝑁 )  =  dom  ( ( ∅  Sat  ∅ ) ‘ 𝑁 ) ) | 
						
							| 19 | 14 18 | eqtr4d | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  =  ( Fmla ‘ 𝑁 ) ) |