Metamath Proof Explorer


Theorem satfdmlem

Description: Lemma for satfdm . (Contributed by AV, 12-Oct-2023)

Ref Expression
Assertion satfdmlem ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) → ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∃ 𝑎 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ( ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) ) )

Proof

Step Hyp Ref Expression
1 satfrel ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) )
2 1 adantr ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) )
3 1stdm ( ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( 1st𝑢 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) )
4 2 3 sylan ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( 1st𝑢 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) )
5 eleq2 ( dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) → ( ( 1st𝑢 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ↔ ( 1st𝑢 ) ∈ dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) )
6 5 adantl ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) → ( ( 1st𝑢 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ↔ ( 1st𝑢 ) ∈ dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) )
7 6 adantr ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( ( 1st𝑢 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ↔ ( 1st𝑢 ) ∈ dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) )
8 fvex ( 1st𝑢 ) ∈ V
9 eldm2g ( ( 1st𝑢 ) ∈ V → ( ( 1st𝑢 ) ∈ dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ↔ ∃ 𝑠 ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) )
10 8 9 ax-mp ( ( 1st𝑢 ) ∈ dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ↔ ∃ 𝑠 ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) )
11 simpr ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) → ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) )
12 2 ad4antr ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) )
13 1stdm ( ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( 1st𝑣 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) )
14 12 13 sylancom ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( 1st𝑣 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) )
15 eleq2 ( dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) → ( ( 1st𝑣 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ↔ ( 1st𝑣 ) ∈ dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) )
16 15 ad5antlr ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( ( 1st𝑣 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ↔ ( 1st𝑣 ) ∈ dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) )
17 fvex ( 1st𝑣 ) ∈ V
18 eldm2g ( ( 1st𝑣 ) ∈ V → ( ( 1st𝑣 ) ∈ dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ↔ ∃ 𝑟 ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) )
19 17 18 ax-mp ( ( 1st𝑣 ) ∈ dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ↔ ∃ 𝑟 ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) )
20 simpr ( ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) → ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) )
21 vex 𝑠 ∈ V
22 8 21 op1std ( 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ → ( 1st𝑎 ) = ( 1st𝑢 ) )
23 22 eqcomd ( 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ → ( 1st𝑢 ) = ( 1st𝑎 ) )
24 23 ad3antlr ( ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) → ( 1st𝑢 ) = ( 1st𝑎 ) )
25 vex 𝑟 ∈ V
26 17 25 op1std ( 𝑏 = ⟨ ( 1st𝑣 ) , 𝑟 ⟩ → ( 1st𝑏 ) = ( 1st𝑣 ) )
27 26 eqcomd ( 𝑏 = ⟨ ( 1st𝑣 ) , 𝑟 ⟩ → ( 1st𝑣 ) = ( 1st𝑏 ) )
28 24 27 oveqan12d ( ( ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑏 = ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ) → ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) )
29 28 eqeq2d ( ( ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑏 = ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ↔ 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ) )
30 29 biimpd ( ( ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑏 = ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ) )
31 20 30 rspcimedv ( ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ) )
32 31 ex ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ) ) )
33 32 exlimdv ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( ∃ 𝑟 ⟨ ( 1st𝑣 ) , 𝑟 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ) ) )
34 19 33 syl5bi ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( ( 1st𝑣 ) ∈ dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ) ) )
35 16 34 sylbid ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( ( 1st𝑣 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ) ) )
36 14 35 mpd ( ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ) )
37 36 rexlimdva ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) → ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ) )
38 eqidd ( 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ → 𝑖 = 𝑖 )
39 38 23 goaleq12d ( 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ → ∀𝑔 𝑖 ( 1st𝑢 ) = ∀𝑔 𝑖 ( 1st𝑎 ) )
40 39 eqeq2d ( 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ → ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ↔ 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) )
41 40 biimpd ( 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ → ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) → 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) )
42 41 adantl ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) → ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) → 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) )
43 42 reximdv ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) → ( ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) → ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) )
44 37 43 orim12d ( ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑎 = ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ( ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) ) )
45 11 44 rspcimedv ( ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) ∧ ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∃ 𝑎 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ( ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) ) )
46 45 ex ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∃ 𝑎 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ( ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) ) ) )
47 46 exlimdv ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( ∃ 𝑠 ⟨ ( 1st𝑢 ) , 𝑠 ⟩ ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∃ 𝑎 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ( ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) ) ) )
48 10 47 syl5bi ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( ( 1st𝑢 ) ∈ dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∃ 𝑎 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ( ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) ) ) )
49 7 48 sylbid ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( ( 1st𝑢 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∃ 𝑎 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ( ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) ) ) )
50 4 49 mpd ( ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∃ 𝑎 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ( ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) ) )
51 50 rexlimdva ( ( ( 𝑀𝑉𝐸𝑊𝑌 ∈ ω ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) = dom ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ) → ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∃ 𝑎 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) ( ∃ 𝑏 ∈ ( ( 𝑁 Sat 𝐹 ) ‘ 𝑌 ) 𝑥 = ( ( 1st𝑎 ) ⊼𝑔 ( 1st𝑏 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑎 ) ) ) )