Step |
Hyp |
Ref |
Expression |
1 |
|
satfv0fun |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) |
3 |
|
fveq2 |
⊢ ( 𝑁 = ∅ → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) |
4 |
3
|
funeqd |
⊢ ( 𝑁 = ∅ → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ) |
5 |
2 4
|
syl5ibr |
⊢ ( 𝑁 = ∅ → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
6 |
|
df-ne |
⊢ ( 𝑁 ≠ ∅ ↔ ¬ 𝑁 = ∅ ) |
7 |
|
nnsuc |
⊢ ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 ) |
8 |
|
suceq |
⊢ ( 𝑥 = ∅ → suc 𝑥 = suc ∅ ) |
9 |
8
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) ) |
10 |
9
|
funeqd |
⊢ ( 𝑥 = ∅ → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) ) ) ) |
12 |
|
suceq |
⊢ ( 𝑥 = 𝑦 → suc 𝑥 = suc 𝑦 ) |
13 |
12
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) |
14 |
13
|
funeqd |
⊢ ( 𝑥 = 𝑦 → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) ) ) |
16 |
|
suceq |
⊢ ( 𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦 ) |
17 |
16
|
fveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) |
18 |
17
|
funeqd |
⊢ ( 𝑥 = suc 𝑦 → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) ) |
20 |
|
suceq |
⊢ ( 𝑥 = 𝑛 → suc 𝑥 = suc 𝑛 ) |
21 |
20
|
fveq2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) |
22 |
21
|
funeqd |
⊢ ( 𝑥 = 𝑛 → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) ) |
24 |
|
satffunlem1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) ) |
25 |
|
pm2.27 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) ) |
26 |
|
satffunlem2 |
⊢ ( ( 𝑦 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) |
27 |
26
|
expcom |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑦 ∈ ω → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) ) |
28 |
27
|
com23 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) → ( 𝑦 ∈ ω → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) ) |
29 |
25 28
|
syld |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) → ( 𝑦 ∈ ω → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) ) |
30 |
29
|
com13 |
⊢ ( 𝑦 ∈ ω → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) ) |
31 |
11 15 19 23 24 30
|
finds |
⊢ ( 𝑛 ∈ ω → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑁 = suc 𝑛 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑁 = suc 𝑛 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) |
34 |
33
|
funeqd |
⊢ ( 𝑁 = suc 𝑛 → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) |
35 |
34
|
imbi2d |
⊢ ( 𝑁 = suc 𝑛 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑁 = suc 𝑛 ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) ) |
37 |
32 36
|
mpbird |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑁 = suc 𝑛 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
38 |
37
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
39 |
7 38
|
syl |
⊢ ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
40 |
39
|
expcom |
⊢ ( 𝑁 ≠ ∅ → ( 𝑁 ∈ ω → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
41 |
6 40
|
sylbir |
⊢ ( ¬ 𝑁 = ∅ → ( 𝑁 ∈ ω → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
42 |
41
|
com13 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑁 ∈ ω → ( ¬ 𝑁 = ∅ → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
43 |
42
|
3impia |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ¬ 𝑁 = ∅ → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
44 |
43
|
com12 |
⊢ ( ¬ 𝑁 = ∅ → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
45 |
5 44
|
pm2.61i |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |