| Step |
Hyp |
Ref |
Expression |
| 1 |
|
satffunlem2lem2.s |
⊢ 𝑆 = ( 𝑀 Sat 𝐸 ) |
| 2 |
|
satffunlem2lem2.a |
⊢ 𝐴 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) |
| 3 |
|
satffunlem2lem2.b |
⊢ 𝐵 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } |
| 4 |
1
|
fveq1i |
⊢ ( 𝑆 ‘ suc 𝑁 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) |
| 5 |
4
|
dmeqi |
⊢ dom ( 𝑆 ‘ suc 𝑁 ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) |
| 6 |
|
simprl |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → 𝑀 ∈ 𝑉 ) |
| 7 |
|
simprr |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → 𝐸 ∈ 𝑊 ) |
| 8 |
|
peano2 |
⊢ ( 𝑁 ∈ ω → suc 𝑁 ∈ ω ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → suc 𝑁 ∈ ω ) |
| 10 |
6 7 9
|
3jca |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ suc 𝑁 ∈ ω ) ) |
| 11 |
|
satfdmfmla |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ suc 𝑁 ∈ ω ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) = ( Fmla ‘ suc 𝑁 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) = ( Fmla ‘ suc 𝑁 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) = ( Fmla ‘ suc 𝑁 ) ) |
| 14 |
5 13
|
eqtrid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → dom ( 𝑆 ‘ suc 𝑁 ) = ( Fmla ‘ suc 𝑁 ) ) |
| 15 |
|
ovex |
⊢ ( 𝑀 ↑m ω ) ∈ V |
| 16 |
15
|
difexi |
⊢ ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ∈ V |
| 17 |
2 16
|
eqeltri |
⊢ 𝐴 ∈ V |
| 18 |
17
|
a1i |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ) → 𝐴 ∈ V ) |
| 19 |
18
|
ralrimiva |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ) → ∀ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝐴 ∈ V ) |
| 20 |
3 15
|
rabex2 |
⊢ 𝐵 ∈ V |
| 21 |
20
|
a1i |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑖 ∈ ω ) → 𝐵 ∈ V ) |
| 22 |
21
|
ralrimiva |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ) → ∀ 𝑖 ∈ ω 𝐵 ∈ V ) |
| 23 |
19 22
|
jca |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ) → ( ∀ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝐴 ∈ V ∧ ∀ 𝑖 ∈ ω 𝐵 ∈ V ) ) |
| 24 |
23
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ∀ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∀ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝐴 ∈ V ∧ ∀ 𝑖 ∈ ω 𝐵 ∈ V ) ) |
| 25 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) |
| 26 |
8
|
ancri |
⊢ ( 𝑁 ∈ ω → ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) |
| 28 |
25 27
|
jca |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) ) |
| 29 |
|
sssucid |
⊢ 𝑁 ⊆ suc 𝑁 |
| 30 |
1
|
satfsschain |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) → ( 𝑁 ⊆ suc 𝑁 → ( 𝑆 ‘ 𝑁 ) ⊆ ( 𝑆 ‘ suc 𝑁 ) ) ) |
| 31 |
28 29 30
|
mpisyl |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑆 ‘ 𝑁 ) ⊆ ( 𝑆 ‘ suc 𝑁 ) ) |
| 32 |
|
dmopab3rexdif |
⊢ ( ( ∀ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∀ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝐴 ∈ V ∧ ∀ 𝑖 ∈ ω 𝐵 ∈ V ) ∧ ( 𝑆 ‘ 𝑁 ) ⊆ ( 𝑆 ‘ suc 𝑁 ) ) → dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } = { 𝑥 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) } ) |
| 33 |
24 31 32
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } = { 𝑥 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) } ) |
| 34 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 35 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑢 → ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑢 ) ↔ ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑢 ) ) ) |
| 36 |
35
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ∧ 𝑤 = 𝑢 ) → ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑢 ) ↔ ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑢 ) ) ) |
| 37 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑢 ) ) |
| 38 |
34 36 37
|
rspcedvd |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → ∃ 𝑤 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑢 ) ) |
| 39 |
4
|
funeqi |
⊢ ( Fun ( 𝑆 ‘ suc 𝑁 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 40 |
39
|
biimpi |
⊢ ( Fun ( 𝑆 ‘ suc 𝑁 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 41 |
40
|
adantl |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 42 |
1
|
fveq1i |
⊢ ( 𝑆 ‘ 𝑁 ) = ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) |
| 43 |
31 42 4
|
3sstr3g |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 44 |
41 43
|
jca |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∧ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∧ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) ) |
| 46 |
|
funeldmdif |
⊢ ( ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∧ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) → ( ( 1st ‘ 𝑢 ) ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ↔ ∃ 𝑤 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑢 ) ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → ( ( 1st ‘ 𝑢 ) ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ↔ ∃ 𝑤 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑢 ) ) ) |
| 48 |
38 47
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → ( 1st ‘ 𝑢 ) ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 49 |
48
|
ex |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) → ( 1st ‘ 𝑢 ) ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 50 |
4 42
|
difeq12i |
⊢ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| 51 |
50
|
eleq2i |
⊢ ( 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ↔ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 52 |
51
|
a1i |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ↔ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 53 |
13
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( Fmla ‘ suc 𝑁 ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 54 |
|
simpl |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → 𝑁 ∈ ω ) |
| 55 |
6 7 54
|
3jca |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ) |
| 56 |
|
satfdmfmla |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( Fmla ‘ 𝑁 ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( Fmla ‘ 𝑁 ) ) |
| 58 |
57
|
eqcomd |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( Fmla ‘ 𝑁 ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( Fmla ‘ 𝑁 ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| 60 |
53 59
|
difeq12d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) = ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 61 |
60
|
eleq2d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( 1st ‘ 𝑢 ) ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ↔ ( 1st ‘ 𝑢 ) ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 62 |
49 52 61
|
3imtr4d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) → ( 1st ‘ 𝑢 ) ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ) |
| 63 |
62
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) → ( 1st ‘ 𝑢 ) ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) → ( 1st ‘ 𝑢 ) ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) |
| 65 |
|
oveq1 |
⊢ ( 𝑓 = ( 1st ‘ 𝑢 ) → ( 𝑓 ⊼𝑔 𝑔 ) = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) |
| 66 |
65
|
eqeq2d |
⊢ ( 𝑓 = ( 1st ‘ 𝑢 ) → ( 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ↔ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) |
| 67 |
66
|
rexbidv |
⊢ ( 𝑓 = ( 1st ‘ 𝑢 ) → ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ↔ ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) |
| 68 |
|
eqidd |
⊢ ( 𝑓 = ( 1st ‘ 𝑢 ) → 𝑖 = 𝑖 ) |
| 69 |
|
id |
⊢ ( 𝑓 = ( 1st ‘ 𝑢 ) → 𝑓 = ( 1st ‘ 𝑢 ) ) |
| 70 |
68 69
|
goaleq12d |
⊢ ( 𝑓 = ( 1st ‘ 𝑢 ) → ∀𝑔 𝑖 𝑓 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) |
| 71 |
70
|
eqeq2d |
⊢ ( 𝑓 = ( 1st ‘ 𝑢 ) → ( 𝑥 = ∀𝑔 𝑖 𝑓 ↔ 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) |
| 72 |
71
|
rexbidv |
⊢ ( 𝑓 = ( 1st ‘ 𝑢 ) → ( ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ↔ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) |
| 73 |
67 72
|
orbi12d |
⊢ ( 𝑓 = ( 1st ‘ 𝑢 ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ↔ ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 74 |
73
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ∧ 𝑓 = ( 1st ‘ 𝑢 ) ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ↔ ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 75 |
6
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → 𝑀 ∈ 𝑉 ) |
| 76 |
7
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → 𝐸 ∈ 𝑊 ) |
| 77 |
8
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → suc 𝑁 ∈ ω ) |
| 78 |
75 76 77
|
3jca |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ suc 𝑁 ∈ ω ) ) |
| 79 |
|
satfrel |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ suc 𝑁 ∈ ω ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 80 |
78 79
|
syl |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 81 |
4
|
releqi |
⊢ ( Rel ( 𝑆 ‘ suc 𝑁 ) ↔ Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 82 |
80 81
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → Rel ( 𝑆 ‘ suc 𝑁 ) ) |
| 83 |
|
1stdm |
⊢ ( ( Rel ( 𝑆 ‘ suc 𝑁 ) ∧ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ) → ( 1st ‘ 𝑣 ) ∈ dom ( 𝑆 ‘ suc 𝑁 ) ) |
| 84 |
82 83
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ) → ( 1st ‘ 𝑣 ) ∈ dom ( 𝑆 ‘ suc 𝑁 ) ) |
| 85 |
14
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( Fmla ‘ suc 𝑁 ) = dom ( 𝑆 ‘ suc 𝑁 ) ) |
| 86 |
85
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ) → ( Fmla ‘ suc 𝑁 ) = dom ( 𝑆 ‘ suc 𝑁 ) ) |
| 87 |
84 86
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ) → ( 1st ‘ 𝑣 ) ∈ ( Fmla ‘ suc 𝑁 ) ) |
| 88 |
87
|
ad4ant13 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) → ( 1st ‘ 𝑣 ) ∈ ( Fmla ‘ suc 𝑁 ) ) |
| 89 |
|
oveq2 |
⊢ ( 𝑔 = ( 1st ‘ 𝑣 ) → ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) |
| 90 |
89
|
eqeq2d |
⊢ ( 𝑔 = ( 1st ‘ 𝑣 ) → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ↔ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 91 |
90
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ∧ 𝑔 = ( 1st ‘ 𝑣 ) ) → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ↔ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 92 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) → 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) |
| 93 |
88 91 92
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) → ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) |
| 94 |
93
|
rexlimdva2 |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) → ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) → ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) |
| 95 |
94
|
orim1d |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) → ( ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) → ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 96 |
95
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) → ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) |
| 97 |
64 74 96
|
rspcedvd |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) → ∃ 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) |
| 98 |
97
|
rexlimdva2 |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) → ∃ 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) ) |
| 99 |
55
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ) |
| 100 |
|
satfrel |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| 101 |
99 100
|
syl |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| 102 |
42
|
releqi |
⊢ ( Rel ( 𝑆 ‘ 𝑁 ) ↔ Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| 103 |
101 102
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → Rel ( 𝑆 ‘ 𝑁 ) ) |
| 104 |
|
1stdm |
⊢ ( ( Rel ( 𝑆 ‘ 𝑁 ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) → ( 1st ‘ 𝑢 ) ∈ dom ( 𝑆 ‘ 𝑁 ) ) |
| 105 |
103 104
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) → ( 1st ‘ 𝑢 ) ∈ dom ( 𝑆 ‘ 𝑁 ) ) |
| 106 |
42
|
dmeqi |
⊢ dom ( 𝑆 ‘ 𝑁 ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) |
| 107 |
99 56
|
syl |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( Fmla ‘ 𝑁 ) ) |
| 108 |
106 107
|
eqtrid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → dom ( 𝑆 ‘ 𝑁 ) = ( Fmla ‘ 𝑁 ) ) |
| 109 |
108
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( Fmla ‘ 𝑁 ) = dom ( 𝑆 ‘ 𝑁 ) ) |
| 110 |
109
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) → ( Fmla ‘ 𝑁 ) = dom ( 𝑆 ‘ 𝑁 ) ) |
| 111 |
105 110
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) → ( 1st ‘ 𝑢 ) ∈ ( Fmla ‘ 𝑁 ) ) |
| 112 |
111
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) ∧ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) → ( 1st ‘ 𝑢 ) ∈ ( Fmla ‘ 𝑁 ) ) |
| 113 |
66
|
rexbidv |
⊢ ( 𝑓 = ( 1st ‘ 𝑢 ) → ( ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ↔ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) |
| 114 |
113
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) ∧ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ∧ 𝑓 = ( 1st ‘ 𝑢 ) ) → ( ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ↔ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) |
| 115 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 116 |
|
fveqeq2 |
⊢ ( 𝑡 = 𝑣 → ( ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑣 ) ↔ ( 1st ‘ 𝑣 ) = ( 1st ‘ 𝑣 ) ) ) |
| 117 |
116
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ∧ 𝑡 = 𝑣 ) → ( ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑣 ) ↔ ( 1st ‘ 𝑣 ) = ( 1st ‘ 𝑣 ) ) ) |
| 118 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → ( 1st ‘ 𝑣 ) = ( 1st ‘ 𝑣 ) ) |
| 119 |
115 117 118
|
rspcedvd |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → ∃ 𝑡 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑣 ) ) |
| 120 |
44
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∧ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) ) |
| 121 |
|
funeldmdif |
⊢ ( ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∧ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) → ( ( 1st ‘ 𝑣 ) ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ↔ ∃ 𝑡 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑣 ) ) ) |
| 122 |
120 121
|
syl |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → ( ( 1st ‘ 𝑣 ) ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ↔ ∃ 𝑡 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑣 ) ) ) |
| 123 |
119 122
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) → ( 1st ‘ 𝑣 ) ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 124 |
123
|
ex |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) → ( 1st ‘ 𝑣 ) ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 125 |
50
|
eleq2i |
⊢ ( 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ↔ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 126 |
125
|
a1i |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ↔ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 127 |
12
|
eqcomd |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( Fmla ‘ suc 𝑁 ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 128 |
127 58
|
difeq12d |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) = ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 129 |
128
|
eleq2d |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( ( 1st ‘ 𝑣 ) ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ↔ ( 1st ‘ 𝑣 ) ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 130 |
129
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( 1st ‘ 𝑣 ) ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ↔ ( 1st ‘ 𝑣 ) ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 131 |
124 126 130
|
3imtr4d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) → ( 1st ‘ 𝑣 ) ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ) |
| 132 |
131
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) → ( 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) → ( 1st ‘ 𝑣 ) ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ) |
| 133 |
132
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) → ( 1st ‘ 𝑣 ) ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) |
| 134 |
133
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) → ( 1st ‘ 𝑣 ) ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) |
| 135 |
90
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ∧ 𝑔 = ( 1st ‘ 𝑣 ) ) → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ↔ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 136 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) → 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) |
| 137 |
134 135 136
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) → ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) |
| 138 |
137
|
r19.29an |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) ∧ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) → ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) |
| 139 |
112 114 138
|
rspcedvd |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ) ∧ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) → ∃ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) |
| 140 |
139
|
rexlimdva2 |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) → ∃ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) ) |
| 141 |
98 140
|
orim12d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) → ( ∃ 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ∨ ∃ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) ) ) |
| 142 |
10
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ suc 𝑁 ∈ ω ) ) |
| 143 |
11
|
eqcomd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ suc 𝑁 ∈ ω ) → ( Fmla ‘ suc 𝑁 ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 144 |
142 143
|
syl |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( Fmla ‘ suc 𝑁 ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 145 |
107
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( Fmla ‘ 𝑁 ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| 146 |
144 145
|
difeq12d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) = ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 147 |
146
|
eleq2d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ↔ 𝑓 ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 148 |
|
eqid |
⊢ ( 𝑀 Sat 𝐸 ) = ( 𝑀 Sat 𝐸 ) |
| 149 |
148
|
satfsschain |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) → ( 𝑁 ⊆ suc 𝑁 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) ) |
| 150 |
28 29 149
|
mpisyl |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 151 |
|
releldmdifi |
⊢ ( ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∧ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) → ( 𝑓 ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) → ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑢 ) = 𝑓 ) ) |
| 152 |
80 150 151
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑓 ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) → ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑢 ) = 𝑓 ) ) |
| 153 |
147 152
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) → ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑢 ) = 𝑓 ) ) |
| 154 |
50
|
eqcomi |
⊢ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) = ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) |
| 155 |
154
|
rexeqi |
⊢ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑢 ) = 𝑓 ↔ ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 1st ‘ 𝑢 ) = 𝑓 ) |
| 156 |
|
r19.41v |
⊢ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ( 1st ‘ 𝑢 ) = 𝑓 ∧ ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) ↔ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 1st ‘ 𝑢 ) = 𝑓 ∧ ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) ) |
| 157 |
|
oveq1 |
⊢ ( ( 1st ‘ 𝑢 ) = 𝑓 → ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) = ( 𝑓 ⊼𝑔 𝑔 ) ) |
| 158 |
157
|
eqeq2d |
⊢ ( ( 1st ‘ 𝑢 ) = 𝑓 → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ↔ 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) ) |
| 159 |
158
|
rexbidv |
⊢ ( ( 1st ‘ 𝑢 ) = 𝑓 → ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ↔ ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) ) |
| 160 |
|
eqidd |
⊢ ( ( 1st ‘ 𝑢 ) = 𝑓 → 𝑖 = 𝑖 ) |
| 161 |
|
id |
⊢ ( ( 1st ‘ 𝑢 ) = 𝑓 → ( 1st ‘ 𝑢 ) = 𝑓 ) |
| 162 |
160 161
|
goaleq12d |
⊢ ( ( 1st ‘ 𝑢 ) = 𝑓 → ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) = ∀𝑔 𝑖 𝑓 ) |
| 163 |
162
|
eqeq2d |
⊢ ( ( 1st ‘ 𝑢 ) = 𝑓 → ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ↔ 𝑥 = ∀𝑔 𝑖 𝑓 ) ) |
| 164 |
163
|
rexbidv |
⊢ ( ( 1st ‘ 𝑢 ) = 𝑓 → ( ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ↔ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) |
| 165 |
159 164
|
orbi12d |
⊢ ( ( 1st ‘ 𝑢 ) = 𝑓 → ( ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ↔ ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) ) |
| 166 |
165
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ ( 1st ‘ 𝑢 ) = 𝑓 ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ↔ ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) ) |
| 167 |
142 11
|
syl |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) = ( Fmla ‘ suc 𝑁 ) ) |
| 168 |
167
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( Fmla ‘ suc 𝑁 ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 169 |
168
|
eleq2d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) ↔ 𝑔 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) ) |
| 170 |
|
releldm2 |
⊢ ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) → ( 𝑔 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ↔ ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 1st ‘ 𝑣 ) = 𝑔 ) ) |
| 171 |
80 170
|
syl |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑔 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ↔ ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 1st ‘ 𝑣 ) = 𝑔 ) ) |
| 172 |
169 171
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) ↔ ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 1st ‘ 𝑣 ) = 𝑔 ) ) |
| 173 |
|
r19.41v |
⊢ ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( ( 1st ‘ 𝑣 ) = 𝑔 ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ↔ ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 1st ‘ 𝑣 ) = 𝑔 ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) |
| 174 |
1
|
eqcomi |
⊢ ( 𝑀 Sat 𝐸 ) = 𝑆 |
| 175 |
174
|
fveq1i |
⊢ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) = ( 𝑆 ‘ suc 𝑁 ) |
| 176 |
175
|
rexeqi |
⊢ ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( ( 1st ‘ 𝑣 ) = 𝑔 ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ↔ ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ( 1st ‘ 𝑣 ) = 𝑔 ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) |
| 177 |
89
|
eqcoms |
⊢ ( ( 1st ‘ 𝑣 ) = 𝑔 → ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) |
| 178 |
177
|
eqeq2d |
⊢ ( ( 1st ‘ 𝑣 ) = 𝑔 → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ↔ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 179 |
178
|
biimpa |
⊢ ( ( ( 1st ‘ 𝑣 ) = 𝑔 ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) → 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) |
| 180 |
179
|
a1i |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( ( 1st ‘ 𝑣 ) = 𝑔 ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) → 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 181 |
180
|
reximdv |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ( 1st ‘ 𝑣 ) = 𝑔 ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) → ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 182 |
176 181
|
biimtrid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( ( 1st ‘ 𝑣 ) = 𝑔 ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) → ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 183 |
173 182
|
biimtrrid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 1st ‘ 𝑣 ) = 𝑔 ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) → ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 184 |
183
|
expd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 1st ‘ 𝑣 ) = 𝑔 → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) ) |
| 185 |
172 184
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) ) |
| 186 |
185
|
rexlimdv |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 187 |
186
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ ( 1st ‘ 𝑢 ) = 𝑓 ) → ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 188 |
187
|
orim1d |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ ( 1st ‘ 𝑢 ) = 𝑓 ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) → ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 189 |
166 188
|
sylbird |
⊢ ( ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ∧ ( 1st ‘ 𝑢 ) = 𝑓 ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) → ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 190 |
189
|
expimpd |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) → ( ( ( 1st ‘ 𝑢 ) = 𝑓 ∧ ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) → ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 191 |
190
|
reximdva |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ( 1st ‘ 𝑢 ) = 𝑓 ∧ ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) → ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 192 |
156 191
|
biimtrrid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 1st ‘ 𝑢 ) = 𝑓 ∧ ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) → ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 193 |
192
|
expd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 1st ‘ 𝑢 ) = 𝑓 → ( ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) → ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 194 |
155 193
|
biimtrid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑢 ) = 𝑓 → ( ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) → ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 195 |
153 194
|
syld |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) → ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 196 |
195
|
rexlimdv |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) → ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 197 |
145
|
eleq2d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑓 ∈ ( Fmla ‘ 𝑁 ) ↔ 𝑓 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 198 |
55 100
|
syl |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| 199 |
198
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| 200 |
|
releldm2 |
⊢ ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) → ( 𝑓 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ↔ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ( 1st ‘ 𝑢 ) = 𝑓 ) ) |
| 201 |
199 200
|
syl |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑓 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ↔ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ( 1st ‘ 𝑢 ) = 𝑓 ) ) |
| 202 |
197 201
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑓 ∈ ( Fmla ‘ 𝑁 ) ↔ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ( 1st ‘ 𝑢 ) = 𝑓 ) ) |
| 203 |
|
r19.41v |
⊢ ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ( ( 1st ‘ 𝑢 ) = 𝑓 ∧ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) ↔ ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ( 1st ‘ 𝑢 ) = 𝑓 ∧ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) ) |
| 204 |
42
|
eqcomi |
⊢ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( 𝑆 ‘ 𝑁 ) |
| 205 |
204
|
rexeqi |
⊢ ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ( ( 1st ‘ 𝑢 ) = 𝑓 ∧ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) ↔ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ( 1st ‘ 𝑢 ) = 𝑓 ∧ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) ) |
| 206 |
158
|
rexbidv |
⊢ ( ( 1st ‘ 𝑢 ) = 𝑓 → ( ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ↔ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) ) |
| 207 |
206
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ ( 1st ‘ 𝑢 ) = 𝑓 ) → ( ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ↔ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) ) |
| 208 |
146
|
eleq2d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ↔ 𝑔 ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 209 |
|
releldmdifi |
⊢ ( ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∧ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) → ( 𝑔 ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) → ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑣 ) = 𝑔 ) ) |
| 210 |
80 150 209
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑔 ∈ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) → ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑣 ) = 𝑔 ) ) |
| 211 |
208 210
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) → ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑣 ) = 𝑔 ) ) |
| 212 |
154
|
rexeqi |
⊢ ( ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑣 ) = 𝑔 ↔ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 1st ‘ 𝑣 ) = 𝑔 ) |
| 213 |
178
|
biimpcd |
⊢ ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) → ( ( 1st ‘ 𝑣 ) = 𝑔 → 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 214 |
213
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) → ( ( 1st ‘ 𝑣 ) = 𝑔 → 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 215 |
214
|
reximdv |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) → ( ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 1st ‘ 𝑣 ) = 𝑔 → ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 216 |
215
|
ex |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) → ( ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 1st ‘ 𝑣 ) = 𝑔 → ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) ) |
| 217 |
216
|
com23 |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 1st ‘ 𝑣 ) = 𝑔 → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) ) |
| 218 |
212 217
|
biimtrid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 1st ‘ 𝑣 ) = 𝑔 → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) ) |
| 219 |
211 218
|
syld |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) ) |
| 220 |
219
|
rexlimdv |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 221 |
220
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ ( 1st ‘ 𝑢 ) = 𝑓 ) → ( ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 222 |
207 221
|
sylbird |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) ∧ ( 1st ‘ 𝑢 ) = 𝑓 ) → ( ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 223 |
222
|
expimpd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( ( 1st ‘ 𝑢 ) = 𝑓 ∧ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) → ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 224 |
223
|
reximdv |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ( 1st ‘ 𝑢 ) = 𝑓 ∧ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 225 |
205 224
|
biimtrid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ( ( 1st ‘ 𝑢 ) = 𝑓 ∧ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 226 |
203 225
|
biimtrrid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ( 1st ‘ 𝑢 ) = 𝑓 ∧ ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 227 |
226
|
expd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ( 1st ‘ 𝑢 ) = 𝑓 → ( ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) → ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) ) |
| 228 |
202 227
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( 𝑓 ∈ ( Fmla ‘ 𝑁 ) → ( ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) → ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) ) |
| 229 |
228
|
rexlimdv |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ∃ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) → ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 230 |
196 229
|
orim12d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( ∃ 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ∨ ∃ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) → ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) ) |
| 231 |
141 230
|
impbid |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ↔ ( ∃ 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ∨ ∃ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) ) ) |
| 232 |
231
|
abbidv |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → { 𝑥 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) } = { 𝑥 ∣ ( ∃ 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ∨ ∃ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) } ) |
| 233 |
33 232
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } = { 𝑥 ∣ ( ∃ 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ∨ ∃ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) } ) |
| 234 |
14 233
|
ineq12d |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( dom ( 𝑆 ‘ suc 𝑁 ) ∩ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } ) = ( ( Fmla ‘ suc 𝑁 ) ∩ { 𝑥 ∣ ( ∃ 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ∨ ∃ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) } ) ) |
| 235 |
|
fmlasucdisj |
⊢ ( 𝑁 ∈ ω → ( ( Fmla ‘ suc 𝑁 ) ∩ { 𝑥 ∣ ( ∃ 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ∨ ∃ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) } ) = ∅ ) |
| 236 |
235
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( ( Fmla ‘ suc 𝑁 ) ∩ { 𝑥 ∣ ( ∃ 𝑓 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ∨ ∃ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑔 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑓 ⊼𝑔 𝑔 ) ) } ) = ∅ ) |
| 237 |
234 236
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( 𝑆 ‘ suc 𝑁 ) ) → ( dom ( 𝑆 ‘ suc 𝑁 ) ∩ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } ) = ∅ ) |