| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satff | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑥  ∈  ω )  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) : ( Fmla ‘ 𝑥 ) ⟶ 𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 2 | 1 | 3expa | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑥  ∈  ω )  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) : ( Fmla ‘ 𝑥 ) ⟶ 𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 3 |  | entric | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( 𝑥  ≺  𝑦  ∨  𝑥  ≈  𝑦  ∨  𝑦  ≺  𝑥 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( 𝑥  ≺  𝑦  ∨  𝑥  ≈  𝑦  ∨  𝑦  ≺  𝑥 ) ) | 
						
							| 5 |  | nnsdomo | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( 𝑥  ≺  𝑦  ↔  𝑥  ⊊  𝑦 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( 𝑥  ≺  𝑦  ↔  𝑥  ⊊  𝑦 ) ) | 
						
							| 7 |  | pm3.22 | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( 𝑦  ∈  ω  ∧  𝑥  ∈  ω ) ) | 
						
							| 8 | 7 | anim2i | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑦  ∈  ω  ∧  𝑥  ∈  ω ) ) ) | 
						
							| 9 |  | pssss | ⊢ ( 𝑥  ⊊  𝑦  →  𝑥  ⊆  𝑦 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑀  Sat  𝐸 )  =  ( 𝑀  Sat  𝐸 ) | 
						
							| 11 | 10 | satfsschain | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑦  ∈  ω  ∧  𝑥  ∈  ω ) )  →  ( 𝑥  ⊆  𝑦  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 ) ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑦  ∈  ω  ∧  𝑥  ∈  ω ) )  ∧  𝑥  ⊆  𝑦 )  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 ) ) | 
						
							| 13 | 8 9 12 | syl2an | ⊢ ( ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  ∧  𝑥  ⊊  𝑦 )  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 ) ) | 
						
							| 14 | 13 | orcd | ⊢ ( ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  ∧  𝑥  ⊊  𝑦 )  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) | 
						
							| 15 | 14 | ex | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( 𝑥  ⊊  𝑦  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) ) | 
						
							| 16 | 6 15 | sylbid | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( 𝑥  ≺  𝑦  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) ) | 
						
							| 17 |  | nneneq | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( 𝑥  ≈  𝑦  ↔  𝑥  =  𝑦 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( 𝑥  ≈  𝑦  ↔  𝑥  =  𝑦 ) ) | 
						
							| 19 |  | ssid | ⊢ ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  =  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 ) ) | 
						
							| 21 | 19 20 | sseqtrrid | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) | 
						
							| 22 | 21 | olcd | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) | 
						
							| 23 | 18 22 | biimtrdi | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( 𝑥  ≈  𝑦  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) ) | 
						
							| 24 |  | nnsdomo | ⊢ ( ( 𝑦  ∈  ω  ∧  𝑥  ∈  ω )  →  ( 𝑦  ≺  𝑥  ↔  𝑦  ⊊  𝑥 ) ) | 
						
							| 25 | 24 | ancoms | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( 𝑦  ≺  𝑥  ↔  𝑦  ⊊  𝑥 ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( 𝑦  ≺  𝑥  ↔  𝑦  ⊊  𝑥 ) ) | 
						
							| 27 | 10 | satfsschain | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( 𝑦  ⊆  𝑥  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) | 
						
							| 28 |  | pssss | ⊢ ( 𝑦  ⊊  𝑥  →  𝑦  ⊆  𝑥 ) | 
						
							| 29 | 27 28 | impel | ⊢ ( ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  ∧  𝑦  ⊊  𝑥 )  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) | 
						
							| 30 | 29 | olcd | ⊢ ( ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  ∧  𝑦  ⊊  𝑥 )  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) | 
						
							| 31 | 30 | ex | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( 𝑦  ⊊  𝑥  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) ) | 
						
							| 32 | 26 31 | sylbid | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( 𝑦  ≺  𝑥  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) ) | 
						
							| 33 | 16 23 32 | 3jaod | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( ( 𝑥  ≺  𝑦  ∨  𝑥  ≈  𝑦  ∨  𝑦  ≺  𝑥 )  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) ) | 
						
							| 34 | 4 33 | mpd | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) | 
						
							| 35 | 34 | expr | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑥  ∈  ω )  →  ( 𝑦  ∈  ω  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) ) | 
						
							| 36 | 35 | ralrimiv | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑥  ∈  ω )  →  ∀ 𝑦  ∈  ω ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) | 
						
							| 37 | 2 36 | jca | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑥  ∈  ω )  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) : ( Fmla ‘ 𝑥 ) ⟶ 𝒫  ( 𝑀  ↑m  ω )  ∧  ∀ 𝑦  ∈  ω ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) ) | 
						
							| 38 | 37 | ralrimiva | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ∀ 𝑥  ∈  ω ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) : ( Fmla ‘ 𝑥 ) ⟶ 𝒫  ( 𝑀  ↑m  ω )  ∧  ∀ 𝑦  ∈  ω ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) ) ) | 
						
							| 39 |  | fvex | ⊢ ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ∈  V | 
						
							| 40 | 20 39 | fiun | ⊢ ( ∀ 𝑥  ∈  ω ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) : ( Fmla ‘ 𝑥 ) ⟶ 𝒫  ( 𝑀  ↑m  ω )  ∧  ∀ 𝑦  ∈  ω ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ∨  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑦 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) )  →  ∪  𝑥  ∈  ω ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) : ∪  𝑥  ∈  ω ( Fmla ‘ 𝑥 ) ⟶ 𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 41 | 38 40 | syl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ∪  𝑥  ∈  ω ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) : ∪  𝑥  ∈  ω ( Fmla ‘ 𝑥 ) ⟶ 𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 42 |  | satom | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( 𝑀  Sat  𝐸 ) ‘ ω )  =  ∪  𝑥  ∈  ω ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) ) | 
						
							| 43 |  | fmla | ⊢ ( Fmla ‘ ω )  =  ∪  𝑥  ∈  ω ( Fmla ‘ 𝑥 ) | 
						
							| 44 | 43 | a1i | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( Fmla ‘ ω )  =  ∪  𝑥  ∈  ω ( Fmla ‘ 𝑥 ) ) | 
						
							| 45 | 42 44 | feq12d | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫  ( 𝑀  ↑m  ω )  ↔  ∪  𝑥  ∈  ω ( ( 𝑀  Sat  𝐸 ) ‘ 𝑥 ) : ∪  𝑥  ∈  ω ( Fmla ‘ 𝑥 ) ⟶ 𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 46 | 41 45 | mpbird | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( 𝑀  Sat  𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫  ( 𝑀  ↑m  ω ) ) |