Metamath Proof Explorer


Theorem satfv0

Description: The value of the satisfaction predicate as function over wff codes at (/) . (Contributed by AV, 8-Oct-2023)

Ref Expression
Hypothesis satfv0.s 𝑆 = ( 𝑀 Sat 𝐸 )
Assertion satfv0 ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑆 ‘ ∅ ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } )

Proof

Step Hyp Ref Expression
1 satfv0.s 𝑆 = ( 𝑀 Sat 𝐸 )
2 peano1 ∅ ∈ ω
3 elelsuc ( ∅ ∈ ω → ∅ ∈ suc ω )
4 2 3 mp1i ( ( 𝑀𝑉𝐸𝑊 ) → ∅ ∈ suc ω )
5 1 satfvsucom ( ( 𝑀𝑉𝐸𝑊 ∧ ∅ ∈ suc ω ) → ( 𝑆 ‘ ∅ ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } ) ‘ ∅ ) )
6 4 5 mpd3an3 ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑆 ‘ ∅ ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } ) ‘ ∅ ) )
7 goelel3xp ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑖𝑔 𝑗 ) ∈ ( ω × ( ω × ω ) ) )
8 eleq1 ( 𝑥 = ( 𝑖𝑔 𝑗 ) → ( 𝑥 ∈ ( ω × ( ω × ω ) ) ↔ ( 𝑖𝑔 𝑗 ) ∈ ( ω × ( ω × ω ) ) ) )
9 7 8 syl5ibrcom ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑥 = ( 𝑖𝑔 𝑗 ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) )
10 9 adantrd ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) )
11 10 pm4.71d ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ↔ ( ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) )
12 11 2rexbiia ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) )
13 r19.41vv ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ↔ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) )
14 ancom ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ↔ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) )
15 12 13 14 3bitri ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ↔ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) )
16 15 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) }
17 omex ω ∈ V
18 17 17 xpex ( ω × ω ) ∈ V
19 xpexg ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → ( ω × ( ω × ω ) ) ∈ V )
20 oveq1 ( 𝑖 = 𝑚 → ( 𝑖𝑔 𝑗 ) = ( 𝑚𝑔 𝑗 ) )
21 20 eqeq2d ( 𝑖 = 𝑚 → ( 𝑥 = ( 𝑖𝑔 𝑗 ) ↔ 𝑥 = ( 𝑚𝑔 𝑗 ) ) )
22 fveq2 ( 𝑖 = 𝑚 → ( 𝑎𝑖 ) = ( 𝑎𝑚 ) )
23 22 breq1d ( 𝑖 = 𝑚 → ( ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ↔ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑗 ) ) )
24 23 rabbidv ( 𝑖 = 𝑚 → { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑗 ) } )
25 24 eqeq2d ( 𝑖 = 𝑚 → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑗 ) } ) )
26 21 25 anbi12d ( 𝑖 = 𝑚 → ( ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ↔ ( 𝑥 = ( 𝑚𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑗 ) } ) ) )
27 oveq2 ( 𝑗 = 𝑛 → ( 𝑚𝑔 𝑗 ) = ( 𝑚𝑔 𝑛 ) )
28 27 eqeq2d ( 𝑗 = 𝑛 → ( 𝑥 = ( 𝑚𝑔 𝑗 ) ↔ 𝑥 = ( 𝑚𝑔 𝑛 ) ) )
29 fveq2 ( 𝑗 = 𝑛 → ( 𝑎𝑗 ) = ( 𝑎𝑛 ) )
30 29 breq2d ( 𝑗 = 𝑛 → ( ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑗 ) ↔ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) ) )
31 30 rabbidv ( 𝑗 = 𝑛 → { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑗 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } )
32 31 eqeq2d ( 𝑗 = 𝑛 → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑗 ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } ) )
33 28 32 anbi12d ( 𝑗 = 𝑛 → ( ( 𝑥 = ( 𝑚𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑗 ) } ) ↔ ( 𝑥 = ( 𝑚𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } ) ) )
34 26 33 cbvrex2vw ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ↔ ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑥 = ( 𝑚𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } ) )
35 eqeq1 ( 𝑥 = ( 𝑖𝑔 𝑗 ) → ( 𝑥 = ( 𝑚𝑔 𝑛 ) ↔ ( 𝑖𝑔 𝑗 ) = ( 𝑚𝑔 𝑛 ) ) )
36 35 adantl ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖𝑔 𝑗 ) ) → ( 𝑥 = ( 𝑚𝑔 𝑛 ) ↔ ( 𝑖𝑔 𝑗 ) = ( 𝑚𝑔 𝑛 ) ) )
37 goeleq12bg ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑖𝑔 𝑗 ) = ( 𝑚𝑔 𝑛 ) ↔ ( 𝑖 = 𝑚𝑗 = 𝑛 ) ) )
38 22 eqcomd ( 𝑖 = 𝑚 → ( 𝑎𝑚 ) = ( 𝑎𝑖 ) )
39 29 eqcomd ( 𝑗 = 𝑛 → ( 𝑎𝑛 ) = ( 𝑎𝑗 ) )
40 38 39 breqan12d ( ( 𝑖 = 𝑚𝑗 = 𝑛 ) → ( ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) ↔ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) )
41 40 rabbidv ( ( 𝑖 = 𝑚𝑗 = 𝑛 ) → { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } )
42 37 41 syl6bi ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑖𝑔 𝑗 ) = ( 𝑚𝑔 𝑛 ) → { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) )
43 42 imp ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ ( 𝑖𝑔 𝑗 ) = ( 𝑚𝑔 𝑛 ) ) → { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } )
44 eqeq12 ( ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( 𝑦 = 𝑧 ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) )
45 43 44 syl5ibrcom ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ ( 𝑖𝑔 𝑗 ) = ( 𝑚𝑔 𝑛 ) ) → ( ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → 𝑦 = 𝑧 ) )
46 45 exp4b ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑖𝑔 𝑗 ) = ( 𝑚𝑔 𝑛 ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } → ( 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → 𝑦 = 𝑧 ) ) ) )
47 46 adantr ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖𝑔 𝑗 ) ) → ( ( 𝑖𝑔 𝑗 ) = ( 𝑚𝑔 𝑛 ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } → ( 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → 𝑦 = 𝑧 ) ) ) )
48 36 47 sylbid ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖𝑔 𝑗 ) ) → ( 𝑥 = ( 𝑚𝑔 𝑛 ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } → ( 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → 𝑦 = 𝑧 ) ) ) )
49 48 impd ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖𝑔 𝑗 ) ) → ( ( 𝑥 = ( 𝑚𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } ) → ( 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → 𝑦 = 𝑧 ) ) )
50 49 com23 ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖𝑔 𝑗 ) ) → ( 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → ( ( 𝑥 = ( 𝑚𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } ) → 𝑦 = 𝑧 ) ) )
51 50 expimpd ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( ( 𝑥 = ( 𝑚𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } ) → 𝑦 = 𝑧 ) ) )
52 51 rexlimdvva ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( ( 𝑥 = ( 𝑚𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } ) → 𝑦 = 𝑧 ) ) )
53 52 com23 ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( ( 𝑥 = ( 𝑚𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → 𝑦 = 𝑧 ) ) )
54 53 rexlimivv ( ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑥 = ( 𝑚𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑚 ) 𝐸 ( 𝑎𝑛 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → 𝑦 = 𝑧 ) )
55 34 54 sylbi ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → 𝑦 = 𝑧 ) )
56 55 imp ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) → 𝑦 = 𝑧 )
57 56 gen2 𝑦𝑧 ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) → 𝑦 = 𝑧 )
58 eqeq1 ( 𝑦 = 𝑧 → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ↔ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) )
59 58 anbi2d ( 𝑦 = 𝑧 → ( ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ↔ ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) )
60 59 2rexbidv ( 𝑦 = 𝑧 → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) )
61 60 mo4 ( ∃* 𝑦𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ↔ ∀ 𝑦𝑧 ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) → 𝑦 = 𝑧 ) )
62 57 61 mpbir ∃* 𝑦𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } )
63 moabex ( ∃* 𝑦𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → { 𝑦 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } ∈ V )
64 62 63 mp1i ( ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) → { 𝑦 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } ∈ V )
65 19 64 opabex3d ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) } ∈ V )
66 17 18 65 mp2an { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) } ∈ V
67 16 66 eqeltri { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } ∈ V
68 67 rdg0 ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } ) ‘ ∅ ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) }
69 6 68 eqtrdi ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑆 ‘ ∅ ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } )