| Step |
Hyp |
Ref |
Expression |
| 1 |
|
satfv0.s |
⊢ 𝑆 = ( 𝑀 Sat 𝐸 ) |
| 2 |
|
peano1 |
⊢ ∅ ∈ ω |
| 3 |
|
elelsuc |
⊢ ( ∅ ∈ ω → ∅ ∈ suc ω ) |
| 4 |
2 3
|
mp1i |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ∅ ∈ suc ω ) |
| 5 |
1
|
satfvsucom |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ ∅ ∈ suc ω ) → ( 𝑆 ‘ ∅ ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ ∅ ) ) |
| 6 |
4 5
|
mpd3an3 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ ∅ ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ ∅ ) ) |
| 7 |
|
goelel3xp |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑖 ∈𝑔 𝑗 ) ∈ ( ω × ( ω × ω ) ) ) |
| 8 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 ∈ ( ω × ( ω × ω ) ) ↔ ( 𝑖 ∈𝑔 𝑗 ) ∈ ( ω × ( ω × ω ) ) ) ) |
| 9 |
7 8
|
syl5ibrcom |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) |
| 10 |
9
|
adantrd |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) |
| 11 |
10
|
pm4.71d |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) ) |
| 12 |
11
|
2rexbiia |
⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) |
| 13 |
|
r19.41vv |
⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ↔ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) |
| 14 |
|
ancom |
⊢ ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ↔ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) |
| 15 |
12 13 14
|
3bitri |
⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) |
| 16 |
15
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) } |
| 17 |
|
omex |
⊢ ω ∈ V |
| 18 |
17 17
|
xpex |
⊢ ( ω × ω ) ∈ V |
| 19 |
|
xpexg |
⊢ ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → ( ω × ( ω × ω ) ) ∈ V ) |
| 20 |
|
oveq1 |
⊢ ( 𝑖 = 𝑚 → ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑗 ) ) |
| 21 |
20
|
eqeq2d |
⊢ ( 𝑖 = 𝑚 → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑥 = ( 𝑚 ∈𝑔 𝑗 ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( 𝑎 ‘ 𝑖 ) = ( 𝑎 ‘ 𝑚 ) ) |
| 23 |
22
|
breq1d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) |
| 24 |
23
|
rabbidv |
⊢ ( 𝑖 = 𝑚 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) |
| 25 |
24
|
eqeq2d |
⊢ ( 𝑖 = 𝑚 → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) |
| 26 |
21 25
|
anbi12d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( 𝑥 = ( 𝑚 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑗 = 𝑛 → ( 𝑚 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ) |
| 28 |
27
|
eqeq2d |
⊢ ( 𝑗 = 𝑛 → ( 𝑥 = ( 𝑚 ∈𝑔 𝑗 ) ↔ 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑗 = 𝑛 → ( 𝑎 ‘ 𝑗 ) = ( 𝑎 ‘ 𝑛 ) ) |
| 30 |
29
|
breq2d |
⊢ ( 𝑗 = 𝑛 → ( ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) ) ) |
| 31 |
30
|
rabbidv |
⊢ ( 𝑗 = 𝑛 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) |
| 32 |
31
|
eqeq2d |
⊢ ( 𝑗 = 𝑛 → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) ) |
| 33 |
28 32
|
anbi12d |
⊢ ( 𝑗 = 𝑛 → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) ) ) |
| 34 |
26 33
|
cbvrex2vw |
⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) ) |
| 35 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ↔ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 36 |
35
|
adantl |
⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ↔ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 37 |
|
goeleq12bg |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ↔ ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑛 ) ) ) |
| 38 |
22
|
eqcomd |
⊢ ( 𝑖 = 𝑚 → ( 𝑎 ‘ 𝑚 ) = ( 𝑎 ‘ 𝑖 ) ) |
| 39 |
29
|
eqcomd |
⊢ ( 𝑗 = 𝑛 → ( 𝑎 ‘ 𝑛 ) = ( 𝑎 ‘ 𝑗 ) ) |
| 40 |
38 39
|
breqan12d |
⊢ ( ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑛 ) → ( ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) ↔ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) |
| 41 |
40
|
rabbidv |
⊢ ( ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑛 ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) |
| 42 |
37 41
|
biimtrdi |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) |
| 43 |
42
|
imp |
⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) |
| 44 |
|
eqeq12 |
⊢ ( ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( 𝑦 = 𝑧 ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) |
| 45 |
43 44
|
syl5ibrcom |
⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ) → ( ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) |
| 46 |
45
|
exp4b |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } → ( 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) ) |
| 47 |
46
|
adantr |
⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } → ( 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) ) |
| 48 |
36 47
|
sylbid |
⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } → ( 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) ) |
| 49 |
48
|
impd |
⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → ( 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) |
| 50 |
49
|
com23 |
⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → 𝑦 = 𝑧 ) ) ) |
| 51 |
50
|
expimpd |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → 𝑦 = 𝑧 ) ) ) |
| 52 |
51
|
rexlimdvva |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → 𝑦 = 𝑧 ) ) ) |
| 53 |
52
|
com23 |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) ) |
| 54 |
53
|
rexlimivv |
⊢ ( ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) |
| 55 |
34 54
|
sylbi |
⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) |
| 56 |
55
|
imp |
⊢ ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → 𝑦 = 𝑧 ) |
| 57 |
56
|
gen2 |
⊢ ∀ 𝑦 ∀ 𝑧 ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → 𝑦 = 𝑧 ) |
| 58 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) |
| 59 |
58
|
anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) |
| 60 |
59
|
2rexbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) |
| 61 |
60
|
mo4 |
⊢ ( ∃* 𝑦 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → 𝑦 = 𝑧 ) ) |
| 62 |
57 61
|
mpbir |
⊢ ∃* 𝑦 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) |
| 63 |
|
moabex |
⊢ ( ∃* 𝑦 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → { 𝑦 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ∈ V ) |
| 64 |
62 63
|
mp1i |
⊢ ( ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) → { 𝑦 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ∈ V ) |
| 65 |
19 64
|
opabex3d |
⊢ ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) } ∈ V ) |
| 66 |
17 18 65
|
mp2an |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) } ∈ V |
| 67 |
16 66
|
eqeltri |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ∈ V |
| 68 |
67
|
rdg0 |
⊢ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } |
| 69 |
6 68
|
eqtrdi |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) |