Metamath Proof Explorer


Theorem satfv1

Description: The value of the satisfaction predicate as function over wff codes of height 1. (Contributed by AV, 9-Nov-2023)

Ref Expression
Hypothesis satfv1.s 𝑆 = ( 𝑀 Sat 𝐸 )
Assertion satfv1 ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑆 ‘ 1o ) = ( ( 𝑆 ‘ ∅ ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ) )

Proof

Step Hyp Ref Expression
1 satfv1.s 𝑆 = ( 𝑀 Sat 𝐸 )
2 df-1o 1o = suc ∅
3 2 fveq2i ( 𝑆 ‘ 1o ) = ( 𝑆 ‘ suc ∅ )
4 3 a1i ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑆 ‘ 1o ) = ( 𝑆 ‘ suc ∅ ) )
5 peano1 ∅ ∈ ω
6 1 satfvsuc ( ( 𝑀𝑉𝐸𝑊 ∧ ∅ ∈ ω ) → ( 𝑆 ‘ suc ∅ ) = ( ( 𝑆 ‘ ∅ ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ) } ) )
7 5 6 mp3an3 ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑆 ‘ suc ∅ ) = ( ( 𝑆 ‘ ∅ ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ) } ) )
8 1 satfv0 ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑆 ‘ ∅ ) = { ⟨ 𝑒 , 𝑏 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } )
9 8 rexeqdv ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ) ↔ ∃ 𝑜 ∈ { ⟨ 𝑒 , 𝑏 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ) ) )
10 eqid { ⟨ 𝑒 , 𝑏 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } = { ⟨ 𝑒 , 𝑏 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) }
11 vex 𝑒 ∈ V
12 vex 𝑏 ∈ V
13 11 12 op1std ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( 1st𝑜 ) = 𝑒 )
14 13 oveq1d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) = ( 𝑒𝑔 ( 1st𝑝 ) ) )
15 14 eqeq2d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ↔ 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ) )
16 11 12 op2ndd ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( 2nd𝑜 ) = 𝑏 )
17 16 ineq1d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) = ( 𝑏 ∩ ( 2nd𝑝 ) ) )
18 17 difeq2d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) )
19 18 eqeq2d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ↔ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) )
20 15 19 anbi12d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ↔ ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ) )
21 20 rexbidv ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ↔ ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ) )
22 eqidd ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → 𝑛 = 𝑛 )
23 22 13 goaleq12d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ∀𝑔 𝑛 ( 1st𝑜 ) = ∀𝑔 𝑛 𝑒 )
24 23 eqeq2d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ↔ 𝑥 = ∀𝑔 𝑛 𝑒 ) )
25 16 eleq2d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) ↔ ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ) )
26 25 ralbidv ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) ↔ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ) )
27 26 rabbidv ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } )
28 27 eqeq2d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) )
29 24 28 anbi12d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ↔ ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) )
30 29 rexbidv ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) )
31 21 30 orbi12d ( 𝑜 = ⟨ 𝑒 , 𝑏 ⟩ → ( ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ) ↔ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) )
32 10 31 rexopabb ( ∃ 𝑜 ∈ { ⟨ 𝑒 , 𝑏 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) } ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ) ↔ ∃ 𝑒𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) )
33 9 32 bitrdi ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ) ↔ ∃ 𝑒𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) )
34 1 satfv0 ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑆 ‘ ∅ ) = { ⟨ 𝑐 , 𝑑 ⟩ ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) } )
35 34 rexeqdv ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ↔ ∃ 𝑝 ∈ { ⟨ 𝑐 , 𝑑 ⟩ ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) } ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ) )
36 eqid { ⟨ 𝑐 , 𝑑 ⟩ ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) } = { ⟨ 𝑐 , 𝑑 ⟩ ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) }
37 vex 𝑐 ∈ V
38 vex 𝑑 ∈ V
39 37 38 op1std ( 𝑝 = ⟨ 𝑐 , 𝑑 ⟩ → ( 1st𝑝 ) = 𝑐 )
40 39 oveq2d ( 𝑝 = ⟨ 𝑐 , 𝑑 ⟩ → ( 𝑒𝑔 ( 1st𝑝 ) ) = ( 𝑒𝑔 𝑐 ) )
41 40 eqeq2d ( 𝑝 = ⟨ 𝑐 , 𝑑 ⟩ → ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ↔ 𝑥 = ( 𝑒𝑔 𝑐 ) ) )
42 37 38 op2ndd ( 𝑝 = ⟨ 𝑐 , 𝑑 ⟩ → ( 2nd𝑝 ) = 𝑑 )
43 42 ineq2d ( 𝑝 = ⟨ 𝑐 , 𝑑 ⟩ → ( 𝑏 ∩ ( 2nd𝑝 ) ) = ( 𝑏𝑑 ) )
44 43 difeq2d ( 𝑝 = ⟨ 𝑐 , 𝑑 ⟩ → ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) )
45 44 eqeq2d ( 𝑝 = ⟨ 𝑐 , 𝑑 ⟩ → ( 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ↔ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) )
46 41 45 anbi12d ( 𝑝 = ⟨ 𝑐 , 𝑑 ⟩ → ( ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ↔ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) )
47 36 46 rexopabb ( ∃ 𝑝 ∈ { ⟨ 𝑐 , 𝑑 ⟩ ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) } ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ↔ ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) )
48 35 47 bitrdi ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ↔ ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ) )
49 48 orbi1d ( ( 𝑀𝑉𝐸𝑊 ) → ( ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ↔ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) )
50 49 anbi2d ( ( 𝑀𝑉𝐸𝑊 ) → ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) )
51 50 2exbidv ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑒𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑒𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) )
52 r19.41vv ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) )
53 oveq1 ( 𝑒 = ( 𝑖𝑔 𝑗 ) → ( 𝑒𝑔 𝑐 ) = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) )
54 53 eqeq2d ( 𝑒 = ( 𝑖𝑔 𝑗 ) → ( 𝑥 = ( 𝑒𝑔 𝑐 ) ↔ 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ) )
55 ineq1 ( 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → ( 𝑏𝑑 ) = ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) )
56 55 difeq2d ( 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) )
57 56 eqeq2d ( 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → ( 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ↔ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) )
58 54 57 bi2anan9 ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ↔ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) )
59 58 anbi2d ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ) )
60 59 2exbidv ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ↔ ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ) )
61 eqidd ( 𝑒 = ( 𝑖𝑔 𝑗 ) → 𝑛 = 𝑛 )
62 id ( 𝑒 = ( 𝑖𝑔 𝑗 ) → 𝑒 = ( 𝑖𝑔 𝑗 ) )
63 61 62 goaleq12d ( 𝑒 = ( 𝑖𝑔 𝑗 ) → ∀𝑔 𝑛 𝑒 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) )
64 63 eqeq2d ( 𝑒 = ( 𝑖𝑔 𝑗 ) → ( 𝑥 = ∀𝑔 𝑛 𝑒𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ) )
65 nfrab1 𝑎 { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) }
66 65 nfeq2 𝑎 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) }
67 eleq2 ( 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → ( ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ↔ ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) )
68 67 ralbidv ( 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → ( ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ↔ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) )
69 66 68 rabbid ( 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } )
70 69 eqeq2d ( 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) )
71 64 70 bi2anan9 ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ↔ ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) )
72 71 rexbidv ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ↔ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) )
73 60 72 orbi12d ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ↔ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) ) )
74 73 adantl ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) → ( ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ↔ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) ) )
75 r19.41vv ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) )
76 oveq2 ( 𝑐 = ( 𝑘𝑔 𝑙 ) → ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) )
77 76 adantr ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) → ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) )
78 77 eqeq2d ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) → ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ↔ 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ) )
79 ineq2 ( 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } → ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) = ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) )
80 79 difeq2d ( 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } → ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ) )
81 inrab ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∧ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) }
82 81 difeq2i ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ) = ( ( 𝑀m ω ) ∖ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∧ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } )
83 notrab ( ( 𝑀m ω ) ∖ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∧ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) = { 𝑎 ∈ ( 𝑀m ω ) ∣ ¬ ( ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∧ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) }
84 ianor ( ¬ ( ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∧ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) ↔ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) )
85 84 rabbii { 𝑎 ∈ ( 𝑀m ω ) ∣ ¬ ( ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∧ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) }
86 82 83 85 3eqtri ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ) = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) }
87 80 86 eqtrdi ( 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } → ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } )
88 87 eqeq2d ( 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } → ( 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ↔ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
89 88 adantl ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) → ( 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ↔ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
90 78 89 anbi12d ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) → ( ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ↔ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ) )
91 90 biimpa ( ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) → ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
92 91 reximi ( ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
93 92 reximi ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
94 75 93 sylbir ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
95 94 exlimivv ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
96 95 a1i ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) → ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ) )
97 simpr ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → 𝑛 ∈ ω )
98 simpll ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → 𝑖 ∈ ω )
99 simplr ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → 𝑗 ∈ ω )
100 fveq1 ( 𝑎 = 𝑏 → ( 𝑎𝑖 ) = ( 𝑏𝑖 ) )
101 fveq1 ( 𝑎 = 𝑏 → ( 𝑎𝑗 ) = ( 𝑏𝑗 ) )
102 100 101 breq12d ( 𝑎 = 𝑏 → ( ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ↔ ( 𝑏𝑖 ) 𝐸 ( 𝑏𝑗 ) ) )
103 102 cbvrabv { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } = { 𝑏 ∈ ( 𝑀m ω ) ∣ ( 𝑏𝑖 ) 𝐸 ( 𝑏𝑗 ) }
104 103 eleq2i ( ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ↔ ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀m ω ) ∣ ( 𝑏𝑖 ) 𝐸 ( 𝑏𝑗 ) } )
105 104 ralbii ( ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ↔ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀m ω ) ∣ ( 𝑏𝑖 ) 𝐸 ( 𝑏𝑗 ) } )
106 105 rabbii { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀m ω ) ∣ ( 𝑏𝑖 ) 𝐸 ( 𝑏𝑗 ) } }
107 satfv1lem ( ( 𝑛 ∈ ω ∧ 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀m ω ) ∣ ( 𝑏𝑖 ) 𝐸 ( 𝑏𝑗 ) } } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } )
108 106 107 syl5eq ( ( 𝑛 ∈ ω ∧ 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } )
109 97 98 99 108 syl3anc ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } )
110 109 eqeq2d ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) )
111 110 biimpd ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } → 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) )
112 111 anim2d ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) → ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
113 112 reximdva ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) → ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
114 113 adantr ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) → ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
115 96 114 orim12d ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) → ( ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) )
116 74 115 sylbid ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) → ( ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) )
117 116 expimpd ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) )
118 117 reximdva ( 𝑖 ∈ ω → ( ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) )
119 118 reximia ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
120 52 119 sylbir ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
121 120 exlimivv ( ∃ 𝑒𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
122 ovex ( 𝑖𝑔 𝑗 ) ∈ V
123 ovex ( 𝑀m ω ) ∈ V
124 123 rabex { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∈ V
125 122 124 pm3.2i ( ( 𝑖𝑔 𝑗 ) ∈ V ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∈ V )
126 eqid ( 𝑘𝑔 𝑙 ) = ( 𝑘𝑔 𝑙 )
127 eqid { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) }
128 126 127 pm3.2i ( ( 𝑘𝑔 𝑙 ) = ( 𝑘𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } )
129 86 eqcomi { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) )
130 129 eqeq2i ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ↔ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ) )
131 130 biimpi ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } → 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ) )
132 131 anim2i ( ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) → ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ) ) )
133 ovex ( 𝑘𝑔 𝑙 ) ∈ V
134 123 rabex { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ∈ V
135 eqeq1 ( 𝑐 = ( 𝑘𝑔 𝑙 ) → ( 𝑐 = ( 𝑘𝑔 𝑙 ) ↔ ( 𝑘𝑔 𝑙 ) = ( 𝑘𝑔 𝑙 ) ) )
136 eqeq1 ( 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } → ( 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) )
137 135 136 bi2anan9 ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) → ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ↔ ( ( 𝑘𝑔 𝑙 ) = ( 𝑘𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ) )
138 76 eqeq2d ( 𝑐 = ( 𝑘𝑔 𝑙 ) → ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ↔ 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ) )
139 80 eqeq2d ( 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } → ( 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ↔ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ) ) )
140 138 139 bi2anan9 ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) → ( ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ↔ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ) ) ) )
141 137 140 anbi12d ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) → ( ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ( ( ( 𝑘𝑔 𝑙 ) = ( 𝑘𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ) ) ) ) )
142 133 134 141 spc2ev ( ( ( ( 𝑘𝑔 𝑙 ) = ( 𝑘𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ) ) ) → ∃ 𝑐𝑑 ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) )
143 128 132 142 sylancr ( ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) → ∃ 𝑐𝑑 ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) )
144 143 reximi ( ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) → ∃ 𝑙 ∈ ω ∃ 𝑐𝑑 ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) )
145 144 reximi ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ∃ 𝑐𝑑 ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) )
146 75 bicomi ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) )
147 146 2exbii ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑐𝑑𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) )
148 2ex2rexrot ( ∃ 𝑐𝑑𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ∃ 𝑐𝑑 ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) )
149 147 148 bitri ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ∃ 𝑐𝑑 ( ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) )
150 145 149 sylibr ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) → ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) )
151 150 a1i ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) → ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ) )
152 109 eqcomd ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } )
153 152 eqeq2d ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) )
154 153 biimpd ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } → 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) )
155 154 anim2d ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) → ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) )
156 155 reximdva ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) → ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) )
157 151 156 orim12d ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) → ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) ) )
158 157 imp ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) → ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) )
159 eqid ( 𝑖𝑔 𝑗 ) = ( 𝑖𝑔 𝑗 )
160 eqid { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) }
161 159 160 pm3.2i ( ( 𝑖𝑔 𝑗 ) = ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } )
162 158 161 jctil ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) → ( ( ( 𝑖𝑔 𝑗 ) = ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) ) )
163 eqeq1 ( 𝑒 = ( 𝑖𝑔 𝑗 ) → ( 𝑒 = ( 𝑖𝑔 𝑗 ) ↔ ( 𝑖𝑔 𝑗 ) = ( 𝑖𝑔 𝑗 ) ) )
164 eqeq1 ( 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } → ( 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) )
165 163 164 bi2anan9 ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ↔ ( ( 𝑖𝑔 𝑗 ) = ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ) )
166 165 73 anbi12d ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) → ( ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ( ( ( 𝑖𝑔 𝑗 ) = ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) ) ) )
167 166 spc2egv ( ( ( 𝑖𝑔 𝑗 ) ∈ V ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∈ V ) → ( ( ( ( 𝑖𝑔 𝑗 ) = ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } } ) ) ) → ∃ 𝑒𝑏 ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) )
168 125 162 167 mpsyl ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) → ∃ 𝑒𝑏 ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) )
169 168 ex ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) → ∃ 𝑒𝑏 ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) )
170 169 reximdva ( 𝑖 ∈ ω → ( ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) → ∃ 𝑗 ∈ ω ∃ 𝑒𝑏 ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) )
171 170 reximia ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑒𝑏 ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) )
172 52 bicomi ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) )
173 172 2exbii ( ∃ 𝑒𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑒𝑏𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) )
174 2ex2rexrot ( ∃ 𝑒𝑏𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑒𝑏 ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) )
175 173 174 bitri ( ∃ 𝑒𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑒𝑏 ( ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) )
176 171 175 sylibr ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) → ∃ 𝑒𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) )
177 121 176 impbii ( ∃ 𝑒𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑐𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
178 51 177 bitrdi ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑒𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( 𝑏 ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) )
179 33 178 bitrd ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) )
180 179 opabbidv ( ( 𝑀𝑉𝐸𝑊 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } )
181 180 uneq2d ( ( 𝑀𝑉𝐸𝑊 ) → ( ( 𝑆 ‘ ∅ ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st𝑜 ) ⊼𝑔 ( 1st𝑝 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑜 ) ∩ ( 2nd𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑛 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd𝑜 ) } ) ) } ) = ( ( 𝑆 ‘ ∅ ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ) )
182 4 7 181 3eqtrd ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑆 ‘ 1o ) = ( ( 𝑆 ‘ ∅ ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ) )