Metamath Proof Explorer


Theorem satfv1fvfmla1

Description: The value of the satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023)

Ref Expression
Hypothesis satfv1fvfmla1.x 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝐿 ) )
Assertion satfv1fvfmla1 ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } )

Proof

Step Hyp Ref Expression
1 satfv1fvfmla1.x 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝐿 ) )
2 simpl ( ( 𝑀𝑉𝐸𝑊 ) → 𝑀𝑉 )
3 simpr ( ( 𝑀𝑉𝐸𝑊 ) → 𝐸𝑊 )
4 1onn 1o ∈ ω
5 4 a1i ( ( 𝑀𝑉𝐸𝑊 ) → 1o ∈ ω )
6 2 3 5 3jca ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑀𝑉𝐸𝑊 ∧ 1o ∈ ω ) )
7 6 3ad2ant1 ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀𝑉𝐸𝑊 ∧ 1o ∈ ω ) )
8 satffun ( ( 𝑀𝑉𝐸𝑊 ∧ 1o ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) )
9 7 8 syl ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) )
10 simp2l ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐼 ∈ ω )
11 simp2r ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐽 ∈ ω )
12 simp3l ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐾 ∈ ω )
13 simp3r ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐿 ∈ ω )
14 eqid { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) }
15 1 14 pm3.2i ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } )
16 15 a1i ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ) )
17 oveq1 ( 𝑘 = 𝐾 → ( 𝑘𝑔 𝑙 ) = ( 𝐾𝑔 𝑙 ) )
18 17 oveq2d ( 𝑘 = 𝐾 → ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝑙 ) ) )
19 18 eqeq2d ( 𝑘 = 𝐾 → ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝑙 ) ) ) )
20 fveq2 ( 𝑘 = 𝐾 → ( 𝑎𝑘 ) = ( 𝑎𝐾 ) )
21 20 breq1d ( 𝑘 = 𝐾 → ( ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ↔ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ) )
22 21 notbid ( 𝑘 = 𝐾 → ( ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ↔ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ) )
23 22 orbi2d ( 𝑘 = 𝐾 → ( ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) ↔ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ) ) )
24 23 rabbidv ( 𝑘 = 𝐾 → { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ) } )
25 24 eqeq2d ( 𝑘 = 𝐾 → ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
26 19 25 anbi12d ( 𝑘 = 𝐾 → ( ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ) } ) ) )
27 oveq2 ( 𝑙 = 𝐿 → ( 𝐾𝑔 𝑙 ) = ( 𝐾𝑔 𝐿 ) )
28 27 oveq2d ( 𝑙 = 𝐿 → ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝑙 ) ) = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝐿 ) ) )
29 28 eqeq2d ( 𝑙 = 𝐿 → ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝐿 ) ) ) )
30 fveq2 ( 𝑙 = 𝐿 → ( 𝑎𝑙 ) = ( 𝑎𝐿 ) )
31 30 breq2d ( 𝑙 = 𝐿 → ( ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ↔ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) )
32 31 notbid ( 𝑙 = 𝐿 → ( ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ↔ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) )
33 32 orbi2d ( 𝑙 = 𝐿 → ( ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ) ↔ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) ) )
34 33 rabbidv ( 𝑙 = 𝐿 → { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } )
35 34 eqeq2d ( 𝑙 = 𝐿 → ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ) )
36 29 35 anbi12d ( 𝑙 = 𝐿 → ( ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ) ) )
37 26 36 rspc2ev ( ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ∧ ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝐾𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
38 12 13 16 37 syl3anc ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
39 38 orcd ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) ) } ) ) )
40 oveq1 ( 𝑖 = 𝐼 → ( 𝑖𝑔 𝑗 ) = ( 𝐼𝑔 𝑗 ) )
41 40 oveq1d ( 𝑖 = 𝐼 → ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) = ( ( 𝐼𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) )
42 41 eqeq2d ( 𝑖 = 𝐼 → ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ) )
43 fveq2 ( 𝑖 = 𝐼 → ( 𝑎𝑖 ) = ( 𝑎𝐼 ) )
44 43 breq1d ( 𝑖 = 𝐼 → ( ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ↔ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) )
45 44 notbid ( 𝑖 = 𝐼 → ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ↔ ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) )
46 45 orbi1d ( 𝑖 = 𝐼 → ( ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) ↔ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) ) )
47 46 rabbidv ( 𝑖 = 𝐼 → { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } )
48 47 eqeq2d ( 𝑖 = 𝐼 → ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
49 42 48 anbi12d ( 𝑖 = 𝐼 → ( ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ) )
50 49 2rexbidv ( 𝑖 = 𝐼 → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ) )
51 eqidd ( 𝑖 = 𝐼𝑛 = 𝑛 )
52 51 40 goaleq12d ( 𝑖 = 𝐼 → ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) = ∀𝑔 𝑛 ( 𝐼𝑔 𝑗 ) )
53 52 eqeq2d ( 𝑖 = 𝐼 → ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝑗 ) ) )
54 eqeq1 ( 𝑖 = 𝐼 → ( 𝑖 = 𝑛𝐼 = 𝑛 ) )
55 biidd ( 𝑖 = 𝐼 → ( if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) ↔ if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) ) )
56 43 breq1d ( 𝑖 = 𝐼 → ( ( 𝑎𝑖 ) 𝐸 𝑧 ↔ ( 𝑎𝐼 ) 𝐸 𝑧 ) )
57 56 44 ifpbi23d ( 𝑖 = 𝐼 → ( if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ↔ if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) )
58 54 55 57 ifpbi123d ( 𝑖 = 𝐼 → ( if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) ↔ if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) ) )
59 58 ralbidv ( 𝑖 = 𝐼 → ( ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) ↔ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) ) )
60 59 rabbidv ( 𝑖 = 𝐼 → { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) } )
61 60 eqeq2d ( 𝑖 = 𝐼 → ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) )
62 53 61 anbi12d ( 𝑖 = 𝐼 → ( ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ↔ ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
63 62 rexbidv ( 𝑖 = 𝐼 → ( ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
64 50 63 orbi12d ( 𝑖 = 𝐼 → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) )
65 oveq2 ( 𝑗 = 𝐽 → ( 𝐼𝑔 𝑗 ) = ( 𝐼𝑔 𝐽 ) )
66 65 oveq1d ( 𝑗 = 𝐽 → ( ( 𝐼𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) )
67 66 eqeq2d ( 𝑗 = 𝐽 → ( 𝑋 = ( ( 𝐼𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ) )
68 fveq2 ( 𝑗 = 𝐽 → ( 𝑎𝑗 ) = ( 𝑎𝐽 ) )
69 68 breq2d ( 𝑗 = 𝐽 → ( ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ↔ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) )
70 69 notbid ( 𝑗 = 𝐽 → ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ↔ ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) )
71 70 orbi1d ( 𝑗 = 𝐽 → ( ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) ↔ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) ) )
72 71 rabbidv ( 𝑗 = 𝐽 → { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } )
73 72 eqeq2d ( 𝑗 = 𝐽 → ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
74 67 73 anbi12d ( 𝑗 = 𝐽 → ( ( 𝑋 = ( ( 𝐼𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ) )
75 74 2rexbidv ( 𝑗 = 𝐽 → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ) )
76 eqidd ( 𝑗 = 𝐽𝑛 = 𝑛 )
77 76 65 goaleq12d ( 𝑗 = 𝐽 → ∀𝑔 𝑛 ( 𝐼𝑔 𝑗 ) = ∀𝑔 𝑛 ( 𝐼𝑔 𝐽 ) )
78 77 eqeq2d ( 𝑗 = 𝐽 → ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝐽 ) ) )
79 eqeq1 ( 𝑗 = 𝐽 → ( 𝑗 = 𝑛𝐽 = 𝑛 ) )
80 biidd ( 𝑗 = 𝐽 → ( 𝑧 𝐸 𝑧𝑧 𝐸 𝑧 ) )
81 68 breq2d ( 𝑗 = 𝐽 → ( 𝑧 𝐸 ( 𝑎𝑗 ) ↔ 𝑧 𝐸 ( 𝑎𝐽 ) ) )
82 79 80 81 ifpbi123d ( 𝑗 = 𝐽 → ( if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) ↔ if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝐽 ) ) ) )
83 biidd ( 𝑗 = 𝐽 → ( ( 𝑎𝐼 ) 𝐸 𝑧 ↔ ( 𝑎𝐼 ) 𝐸 𝑧 ) )
84 79 83 69 ifpbi123d ( 𝑗 = 𝐽 → ( if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ↔ if- ( 𝐽 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) ) )
85 82 84 ifpbi23d ( 𝑗 = 𝐽 → ( if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) ↔ if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) ) ) )
86 85 ralbidv ( 𝑗 = 𝐽 → ( ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) ↔ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) ) ) )
87 86 rabbidv ( 𝑗 = 𝐽 → { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) ) } )
88 87 eqeq2d ( 𝑗 = 𝐽 → ( { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) } ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) ) } ) )
89 78 88 anbi12d ( 𝑗 = 𝐽 → ( ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ↔ ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) ) } ) ) )
90 89 rexbidv ( 𝑗 = 𝐽 → ( ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) ) } ) ) )
91 75 90 orbi12d ( 𝑗 = 𝐽 → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) ) } ) ) ) )
92 64 91 rspc2ev ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼𝑔 𝐽 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎𝐼 ) 𝐸 𝑧 , ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ) ) } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
93 10 11 39 92 syl3anc ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
94 1 ovexi 𝑋 ∈ V
95 94 a1i ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ V )
96 ovex ( 𝑀m ω ) ∈ V
97 96 rabex { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ∈ V
98 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ) )
99 eqeq1 ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) )
100 98 99 bi2anan9 ( ( 𝑥 = 𝑋𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ) → ( ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ) )
101 100 2rexbidv ( ( 𝑥 = 𝑋𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ) )
102 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ) )
103 eqeq1 ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) )
104 102 103 bi2anan9 ( ( 𝑥 = 𝑋𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ) → ( ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ↔ ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
105 104 rexbidv ( ( 𝑥 = 𝑋𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) )
106 101 105 orbi12d ( ( 𝑥 = 𝑋𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) )
107 106 2rexbidv ( ( 𝑥 = 𝑋𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) )
108 107 opelopabga ( ( 𝑋 ∈ V ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ∈ V ) → ( ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) )
109 95 97 108 sylancl ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) ) )
110 93 109 mpbird ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } )
111 110 olcd ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∨ ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ) )
112 elun ( ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ) ↔ ( ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∨ ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ) )
113 111 112 sylibr ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ) )
114 eqid ( 𝑀 Sat 𝐸 ) = ( 𝑀 Sat 𝐸 )
115 114 satfv1 ( ( 𝑀𝑉𝐸𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ) )
116 115 eleq2d ( ( 𝑀𝑉𝐸𝑊 ) → ( ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ↔ ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ) ) )
117 116 3ad2ant1 ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ↔ ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖𝑔 𝑗 ) ⊼𝑔 ( 𝑘𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ∨ ¬ ( 𝑎𝑘 ) 𝐸 ( 𝑎𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎𝑖 ) 𝐸 𝑧 , ( 𝑎𝑖 ) 𝐸 ( 𝑎𝑗 ) ) ) } ) ) } ) ) )
118 113 117 mpbird ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) )
119 funopfv ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) → ( ⟨ 𝑋 , { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ⟩ ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } ) )
120 9 118 119 sylc ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀m ω ) ∣ ( ¬ ( 𝑎𝐼 ) 𝐸 ( 𝑎𝐽 ) ∨ ¬ ( 𝑎𝐾 ) 𝐸 ( 𝑎𝐿 ) ) } )