| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satfv1fvfmla1.x | ⊢ 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  𝑀  ∈  𝑉 ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  𝐸  ∈  𝑊 ) | 
						
							| 4 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  1o  ∈  ω ) | 
						
							| 6 | 2 3 5 | 3jca | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  1o  ∈  ω ) ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  1o  ∈  ω ) ) | 
						
							| 8 |  | satffun | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  1o  ∈  ω )  →  Fun  ( ( 𝑀  Sat  𝐸 ) ‘ 1o ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  Fun  ( ( 𝑀  Sat  𝐸 ) ‘ 1o ) ) | 
						
							| 10 |  | simp2l | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝐼  ∈  ω ) | 
						
							| 11 |  | simp2r | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝐽  ∈  ω ) | 
						
							| 12 |  | simp3l | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝐾  ∈  ω ) | 
						
							| 13 |  | simp3r | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝐿  ∈  ω ) | 
						
							| 14 |  | eqid | ⊢ { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } | 
						
							| 15 | 1 14 | pm3.2i | ⊢ ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) | 
						
							| 16 | 15 | a1i | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑘  =  𝐾  →  ( 𝑘 ∈𝑔 𝑙 )  =  ( 𝐾 ∈𝑔 𝑙 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑘  =  𝐾  →  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ↔  𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( 𝑎 ‘ 𝑘 )  =  ( 𝑎 ‘ 𝐾 ) ) | 
						
							| 21 | 20 | breq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 )  ↔  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) | 
						
							| 22 | 21 | notbid | ⊢ ( 𝑘  =  𝐾  →  ( ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 )  ↔  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) | 
						
							| 23 | 22 | orbi2d | ⊢ ( 𝑘  =  𝐾  →  ( ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) )  ↔  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) ) | 
						
							| 24 | 23 | rabbidv | ⊢ ( 𝑘  =  𝐾  →  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) | 
						
							| 25 | 24 | eqeq2d | ⊢ ( 𝑘  =  𝐾  →  ( { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) }  ↔  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) | 
						
							| 26 | 19 25 | anbi12d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ↔  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) | 
						
							| 27 |  | oveq2 | ⊢ ( 𝑙  =  𝐿  →  ( 𝐾 ∈𝑔 𝑙 )  =  ( 𝐾 ∈𝑔 𝐿 ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( 𝑙  =  𝐿  →  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) )  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( 𝑙  =  𝐿  →  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) )  ↔  𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑙  =  𝐿  →  ( 𝑎 ‘ 𝑙 )  =  ( 𝑎 ‘ 𝐿 ) ) | 
						
							| 31 | 30 | breq2d | ⊢ ( 𝑙  =  𝐿  →  ( ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 )  ↔  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) ) | 
						
							| 32 | 31 | notbid | ⊢ ( 𝑙  =  𝐿  →  ( ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 )  ↔  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) ) | 
						
							| 33 | 32 | orbi2d | ⊢ ( 𝑙  =  𝐿  →  ( ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) )  ↔  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) ) ) | 
						
							| 34 | 33 | rabbidv | ⊢ ( 𝑙  =  𝐿  →  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) | 
						
							| 35 | 34 | eqeq2d | ⊢ ( 𝑙  =  𝐿  →  ( { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) }  ↔  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) | 
						
							| 36 | 29 35 | anbi12d | ⊢ ( 𝑙  =  𝐿  →  ( ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ↔  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) ) | 
						
							| 37 | 26 36 | rspc2ev | ⊢ ( ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω  ∧  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) )  →  ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) | 
						
							| 38 | 12 13 16 37 | syl3anc | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) | 
						
							| 39 | 38 | orcd | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝐽  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ,  if- ( 𝐽  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑖 ∈𝑔 𝑗 )  =  ( 𝐼 ∈𝑔 𝑗 ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) | 
						
							| 42 | 41 | eqeq2d | ⊢ ( 𝑖  =  𝐼  →  ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ↔  𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑎 ‘ 𝑖 )  =  ( 𝑎 ‘ 𝐼 ) ) | 
						
							| 44 | 43 | breq1d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ↔  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) | 
						
							| 45 | 44 | notbid | ⊢ ( 𝑖  =  𝐼  →  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ↔  ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) | 
						
							| 46 | 45 | orbi1d | ⊢ ( 𝑖  =  𝐼  →  ( ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) )  ↔  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) ) | 
						
							| 47 | 46 | rabbidv | ⊢ ( 𝑖  =  𝐼  →  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) | 
						
							| 48 | 47 | eqeq2d | ⊢ ( 𝑖  =  𝐼  →  ( { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) }  ↔  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) | 
						
							| 49 | 42 48 | anbi12d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ↔  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) | 
						
							| 50 | 49 | 2rexbidv | ⊢ ( 𝑖  =  𝐼  →  ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ↔  ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) | 
						
							| 51 |  | eqidd | ⊢ ( 𝑖  =  𝐼  →  𝑛  =  𝑛 ) | 
						
							| 52 | 51 40 | goaleq12d | ⊢ ( 𝑖  =  𝐼  →  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ) | 
						
							| 53 | 52 | eqeq2d | ⊢ ( 𝑖  =  𝐼  →  ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ↔  𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ) ) | 
						
							| 54 |  | eqeq1 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑖  =  𝑛  ↔  𝐼  =  𝑛 ) ) | 
						
							| 55 |  | biidd | ⊢ ( 𝑖  =  𝐼  →  ( if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) )  ↔  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) | 
						
							| 56 | 43 | breq1d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧  ↔  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ) ) | 
						
							| 57 | 56 44 | ifpbi23d | ⊢ ( 𝑖  =  𝐼  →  ( if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) )  ↔  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) | 
						
							| 58 | 54 55 57 | ifpbi123d | ⊢ ( 𝑖  =  𝐼  →  ( if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) )  ↔  if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) ) | 
						
							| 59 | 58 | ralbidv | ⊢ ( 𝑖  =  𝐼  →  ( ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) )  ↔  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) ) | 
						
							| 60 | 59 | rabbidv | ⊢ ( 𝑖  =  𝐼  →  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) | 
						
							| 61 | 60 | eqeq2d | ⊢ ( 𝑖  =  𝐼  →  ( { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) }  ↔  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) | 
						
							| 62 | 53 61 | anbi12d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } )  ↔  ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) | 
						
							| 63 | 62 | rexbidv | ⊢ ( 𝑖  =  𝐼  →  ( ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } )  ↔  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) | 
						
							| 64 | 50 63 | orbi12d | ⊢ ( 𝑖  =  𝐼  →  ( ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) )  ↔  ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) | 
						
							| 65 |  | oveq2 | ⊢ ( 𝑗  =  𝐽  →  ( 𝐼 ∈𝑔 𝑗 )  =  ( 𝐼 ∈𝑔 𝐽 ) ) | 
						
							| 66 | 65 | oveq1d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) | 
						
							| 67 | 66 | eqeq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ↔  𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) | 
						
							| 68 |  | fveq2 | ⊢ ( 𝑗  =  𝐽  →  ( 𝑎 ‘ 𝑗 )  =  ( 𝑎 ‘ 𝐽 ) ) | 
						
							| 69 | 68 | breq2d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ↔  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) | 
						
							| 70 | 69 | notbid | ⊢ ( 𝑗  =  𝐽  →  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ↔  ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) | 
						
							| 71 | 70 | orbi1d | ⊢ ( 𝑗  =  𝐽  →  ( ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) )  ↔  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) ) | 
						
							| 72 | 71 | rabbidv | ⊢ ( 𝑗  =  𝐽  →  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) | 
						
							| 73 | 72 | eqeq2d | ⊢ ( 𝑗  =  𝐽  →  ( { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) }  ↔  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) | 
						
							| 74 | 67 73 | anbi12d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ↔  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) | 
						
							| 75 | 74 | 2rexbidv | ⊢ ( 𝑗  =  𝐽  →  ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ↔  ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) | 
						
							| 76 |  | eqidd | ⊢ ( 𝑗  =  𝐽  →  𝑛  =  𝑛 ) | 
						
							| 77 | 76 65 | goaleq12d | ⊢ ( 𝑗  =  𝐽  →  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 )  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ) | 
						
							| 78 | 77 | eqeq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 )  ↔  𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ) ) | 
						
							| 79 |  | eqeq1 | ⊢ ( 𝑗  =  𝐽  →  ( 𝑗  =  𝑛  ↔  𝐽  =  𝑛 ) ) | 
						
							| 80 |  | biidd | ⊢ ( 𝑗  =  𝐽  →  ( 𝑧 𝐸 𝑧  ↔  𝑧 𝐸 𝑧 ) ) | 
						
							| 81 | 68 | breq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝑧 𝐸 ( 𝑎 ‘ 𝑗 )  ↔  𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) | 
						
							| 82 | 79 80 81 | ifpbi123d | ⊢ ( 𝑗  =  𝐽  →  ( if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) )  ↔  if- ( 𝐽  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) | 
						
							| 83 |  | biidd | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧  ↔  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ) ) | 
						
							| 84 | 79 83 69 | ifpbi123d | ⊢ ( 𝑗  =  𝐽  →  ( if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) )  ↔  if- ( 𝐽  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) | 
						
							| 85 | 82 84 | ifpbi23d | ⊢ ( 𝑗  =  𝐽  →  ( if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) )  ↔  if- ( 𝐼  =  𝑛 ,  if- ( 𝐽  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ,  if- ( 𝐽  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) ) | 
						
							| 86 | 85 | ralbidv | ⊢ ( 𝑗  =  𝐽  →  ( ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) )  ↔  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝐽  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ,  if- ( 𝐽  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) ) | 
						
							| 87 | 86 | rabbidv | ⊢ ( 𝑗  =  𝐽  →  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝐽  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ,  if- ( 𝐽  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) | 
						
							| 88 | 87 | eqeq2d | ⊢ ( 𝑗  =  𝐽  →  ( { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) }  ↔  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝐽  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ,  if- ( 𝐽  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) | 
						
							| 89 | 78 88 | anbi12d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } )  ↔  ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝐽  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ,  if- ( 𝐽  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) | 
						
							| 90 | 89 | rexbidv | ⊢ ( 𝑗  =  𝐽  →  ( ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } )  ↔  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝐽  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ,  if- ( 𝐽  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) | 
						
							| 91 | 75 90 | orbi12d | ⊢ ( 𝑗  =  𝐽  →  ( ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) )  ↔  ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝐽  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ,  if- ( 𝐽  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) ) | 
						
							| 92 | 64 91 | rspc2ev | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝐼  =  𝑛 ,  if- ( 𝐽  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ,  if- ( 𝐽  =  𝑛 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) )  →  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) | 
						
							| 93 | 10 11 39 92 | syl3anc | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) | 
						
							| 94 | 1 | ovexi | ⊢ 𝑋  ∈  V | 
						
							| 95 | 94 | a1i | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝑋  ∈  V ) | 
						
							| 96 |  | ovex | ⊢ ( 𝑀  ↑m  ω )  ∈  V | 
						
							| 97 | 96 | rabex | ⊢ { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  ∈  V | 
						
							| 98 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ↔  𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) | 
						
							| 99 |  | eqeq1 | ⊢ ( 𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  →  ( 𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) }  ↔  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) | 
						
							| 100 | 98 99 | bi2anan9 | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } )  →  ( ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ↔  ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) | 
						
							| 101 | 100 | 2rexbidv | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } )  →  ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ↔  ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) | 
						
							| 102 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ↔  𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ) ) | 
						
							| 103 |  | eqeq1 | ⊢ ( 𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  →  ( 𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) }  ↔  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) | 
						
							| 104 | 102 103 | bi2anan9 | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } )  →  ( ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } )  ↔  ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) | 
						
							| 105 | 104 | rexbidv | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } )  →  ( ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } )  ↔  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) | 
						
							| 106 | 101 105 | orbi12d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } )  →  ( ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) )  ↔  ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) | 
						
							| 107 | 106 | 2rexbidv | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } )  →  ( ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) )  ↔  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) | 
						
							| 108 | 107 | opelopabga | ⊢ ( ( 𝑋  ∈  V  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  ∈  V )  →  ( 〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) }  ↔  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) | 
						
							| 109 | 95 97 108 | sylancl | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) }  ↔  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑋  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) }  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) | 
						
							| 110 | 93 109 | mpbird | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) | 
						
							| 111 | 110 | olcd | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ ∅ )  ∨  〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) | 
						
							| 112 |  | elun | ⊢ ( 〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ ∅ )  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } )  ↔  ( 〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ ∅ )  ∨  〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) | 
						
							| 113 | 111 112 | sylibr | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ ∅ )  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) | 
						
							| 114 |  | eqid | ⊢ ( 𝑀  Sat  𝐸 )  =  ( 𝑀  Sat  𝐸 ) | 
						
							| 115 | 114 | satfv1 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( 𝑀  Sat  𝐸 ) ‘ 1o )  =  ( ( ( 𝑀  Sat  𝐸 ) ‘ ∅ )  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) | 
						
							| 116 | 115 | eleq2d | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( 〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 1o )  ↔  〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ ∅ )  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) ) | 
						
							| 117 | 116 | 3ad2ant1 | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 1o )  ↔  〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ ∅ )  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( ∃ 𝑘  ∈  ω ∃ 𝑙  ∈  ω ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 )  ∨  ¬  ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } )  ∨  ∃ 𝑛  ∈  ω ( 𝑥  =  ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 if- ( 𝑖  =  𝑛 ,  if- ( 𝑗  =  𝑛 ,  𝑧 𝐸 𝑧 ,  𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ,  if- ( 𝑗  =  𝑛 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ,  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) ) | 
						
							| 118 | 113 117 | mpbird | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 1o ) ) | 
						
							| 119 |  | funopfv | ⊢ ( Fun  ( ( 𝑀  Sat  𝐸 ) ‘ 1o )  →  ( 〈 𝑋 ,  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 1o )  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 1o ) ‘ 𝑋 )  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) | 
						
							| 120 | 9 118 119 | sylc | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ 1o ) ‘ 𝑋 )  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 )  ∨  ¬  ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) |