| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satfun | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( 𝑀  Sat  𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 2 |  | ffvelcdm | ⊢ ( ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫  ( 𝑀  ↑m  ω )  ∧  𝑈  ∈  ( Fmla ‘ ω ) )  →  ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  ∈  𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 3 |  | fvex | ⊢ ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  ∈  V | 
						
							| 4 | 3 | elpw | ⊢ ( ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  ∈  𝒫  ( 𝑀  ↑m  ω )  ↔  ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  ⊆  ( 𝑀  ↑m  ω ) ) | 
						
							| 5 |  | ssel | ⊢ ( ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  ⊆  ( 𝑀  ↑m  ω )  →  ( 𝑆  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  →  𝑆  ∈  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 6 |  | elmapi | ⊢ ( 𝑆  ∈  ( 𝑀  ↑m  ω )  →  𝑆 : ω ⟶ 𝑀 ) | 
						
							| 7 | 5 6 | syl6 | ⊢ ( ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  ⊆  ( 𝑀  ↑m  ω )  →  ( 𝑆  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  →  𝑆 : ω ⟶ 𝑀 ) ) | 
						
							| 8 | 4 7 | sylbi | ⊢ ( ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  ∈  𝒫  ( 𝑀  ↑m  ω )  →  ( 𝑆  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  →  𝑆 : ω ⟶ 𝑀 ) ) | 
						
							| 9 | 2 8 | syl | ⊢ ( ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫  ( 𝑀  ↑m  ω )  ∧  𝑈  ∈  ( Fmla ‘ ω ) )  →  ( 𝑆  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  →  𝑆 : ω ⟶ 𝑀 ) ) | 
						
							| 10 | 9 | ex | ⊢ ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫  ( 𝑀  ↑m  ω )  →  ( 𝑈  ∈  ( Fmla ‘ ω )  →  ( 𝑆  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  →  𝑆 : ω ⟶ 𝑀 ) ) ) | 
						
							| 11 | 1 10 | syl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( 𝑈  ∈  ( Fmla ‘ ω )  →  ( 𝑆  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 )  →  𝑆 : ω ⟶ 𝑀 ) ) ) | 
						
							| 12 | 11 | 3imp | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑈  ∈  ( Fmla ‘ ω )  ∧  𝑆  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ ω ) ‘ 𝑈 ) )  →  𝑆 : ω ⟶ 𝑀 ) |