| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satf | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( 𝑀  Sat  𝐸 )  =  ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } )  ↾  suc  ω ) ) | 
						
							| 2 | 1 | fveq1d | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( 𝑀  Sat  𝐸 ) ‘ ω )  =  ( ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } )  ↾  suc  ω ) ‘ ω ) ) | 
						
							| 3 |  | omex | ⊢ ω  ∈  V | 
						
							| 4 | 3 | sucid | ⊢ ω  ∈  suc  ω | 
						
							| 5 |  | fvres | ⊢ ( ω  ∈  suc  ω  →  ( ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } )  ↾  suc  ω ) ‘ ω )  =  ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ ω ) ) | 
						
							| 6 | 4 5 | mp1i | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } )  ↾  suc  ω ) ‘ ω )  =  ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ ω ) ) | 
						
							| 7 |  | limom | ⊢ Lim  ω | 
						
							| 8 | 3 7 | pm3.2i | ⊢ ( ω  ∈  V  ∧  Lim  ω ) | 
						
							| 9 |  | rdglim2a | ⊢ ( ( ω  ∈  V  ∧  Lim  ω )  →  ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ ω )  =  ∪  𝑛  ∈  ω ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ 𝑛 ) ) | 
						
							| 10 | 8 9 | mp1i | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ ω )  =  ∪  𝑛  ∈  ω ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ 𝑛 ) ) | 
						
							| 11 | 1 | fveq1d | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 )  =  ( ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } )  ↾  suc  ω ) ‘ 𝑛 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑛  ∈  ω )  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 )  =  ( ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } )  ↾  suc  ω ) ‘ 𝑛 ) ) | 
						
							| 13 |  | elelsuc | ⊢ ( 𝑛  ∈  ω  →  𝑛  ∈  suc  ω ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑛  ∈  ω )  →  𝑛  ∈  suc  ω ) | 
						
							| 15 | 14 | fvresd | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑛  ∈  ω )  →  ( ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } )  ↾  suc  ω ) ‘ 𝑛 )  =  ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ 𝑛 ) ) | 
						
							| 16 | 12 15 | eqtr2d | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑛  ∈  ω )  →  ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ 𝑛 )  =  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 ) ) | 
						
							| 17 | 16 | iuneq2dv | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ∪  𝑛  ∈  ω ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ 𝑛 )  =  ∪  𝑛  ∈  ω ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 ) ) | 
						
							| 18 | 10 17 | eqtrd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( rec ( ( 𝑓  ∈  V  ↦  ( 𝑓  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑓 ( ∃ 𝑣  ∈  𝑓 ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ ω )  =  ∪  𝑛  ∈  ω ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 ) ) | 
						
							| 19 | 2 6 18 | 3eqtrd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( 𝑀  Sat  𝐸 ) ‘ ω )  =  ∪  𝑛  ∈  ω ( ( 𝑀  Sat  𝐸 ) ‘ 𝑛 ) ) |