Step |
Hyp |
Ref |
Expression |
1 |
|
sbequ2 |
⊢ ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ) |
2 |
|
19.8a |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
3 |
2
|
ex |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
4 |
1 3
|
syld |
⊢ ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
5 |
4
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
6 |
|
sb4b |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
7 |
|
equs4 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
8 |
6 7
|
syl6bi |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
9 |
5 8
|
pm2.61i |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |