Step |
Hyp |
Ref |
Expression |
1 |
|
sbequ2 |
⊢ ( 𝑥 = 𝑡 → ( [ 𝑡 / 𝑥 ] ∀ 𝑡 𝜑 → ∀ 𝑡 𝜑 ) ) |
2 |
1
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑡 → ( [ 𝑡 / 𝑥 ] ∀ 𝑡 𝜑 → ∀ 𝑡 𝜑 ) ) |
3 |
|
axc11r |
⊢ ( ∀ 𝑥 𝑥 = 𝑡 → ( ∀ 𝑡 𝜑 → ∀ 𝑥 𝜑 ) ) |
4 |
|
ala1 |
⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) |
5 |
3 4
|
syl6 |
⊢ ( ∀ 𝑥 𝑥 = 𝑡 → ( ∀ 𝑡 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) |
6 |
2 5
|
syld |
⊢ ( ∀ 𝑥 𝑥 = 𝑡 → ( [ 𝑡 / 𝑥 ] ∀ 𝑡 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) |
7 |
|
sb4b |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑡 → ( [ 𝑡 / 𝑥 ] ∀ 𝑡 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → ∀ 𝑡 𝜑 ) ) ) |
8 |
|
sp |
⊢ ( ∀ 𝑡 𝜑 → 𝜑 ) |
9 |
8
|
imim2i |
⊢ ( ( 𝑥 = 𝑡 → ∀ 𝑡 𝜑 ) → ( 𝑥 = 𝑡 → 𝜑 ) ) |
10 |
9
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑡 → ∀ 𝑡 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) |
11 |
7 10
|
syl6bi |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑡 → ( [ 𝑡 / 𝑥 ] ∀ 𝑡 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) |
12 |
6 11
|
pm2.61i |
⊢ ( [ 𝑡 / 𝑥 ] ∀ 𝑡 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) |