| Step | Hyp | Ref | Expression | 
						
							| 1 |  | equsb1 | ⊢ [ 𝑦  /  𝑥 ] 𝑥  =  𝑦 | 
						
							| 2 |  | sban | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝑥  =  𝑦  ∧  𝜑 )  ↔  ( [ 𝑦  /  𝑥 ] 𝑥  =  𝑦  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 3 | 2 | simplbi2com | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  →  ( [ 𝑦  /  𝑥 ] 𝑥  =  𝑦  →  [ 𝑦  /  𝑥 ] ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 4 | 1 3 | mpi | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] ( 𝑥  =  𝑦  ∧  𝜑 ) ) | 
						
							| 5 |  | spsbe | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝑥  =  𝑦  ∧  𝜑 )  →  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  →  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) | 
						
							| 7 |  | hbs1 | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  →  ∀ 𝑥 [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑥  =  𝑦  ∧  𝜑 )  →  𝜑 ) | 
						
							| 9 | 8 | a1i | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 )  →  ( ( 𝑥  =  𝑦  ∧  𝜑 )  →  𝜑 ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑥  =  𝑦  ∧  𝜑 )  →  𝑥  =  𝑦 ) | 
						
							| 11 | 10 | a1i | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 )  →  ( ( 𝑥  =  𝑦  ∧  𝜑 )  →  𝑥  =  𝑦 ) ) | 
						
							| 12 |  | sbequ1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 13 | 12 | com12 | ⊢ ( 𝜑  →  ( 𝑥  =  𝑦  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 14 | 9 11 13 | syl6c | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 )  →  ( ( 𝑥  =  𝑦  ∧  𝜑 )  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 15 | 7 14 | exlimexi | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 )  →  [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 16 | 6 15 | impbii | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) |