Metamath Proof Explorer


Theorem sb6a

Description: Equivalence for substitution. (Contributed by NM, 2-Jun-1993) (Proof shortened by Wolf Lammen, 23-Sep-2018)

Ref Expression
Assertion sb6a ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 sbcov ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 )
2 sb6 ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) )
3 1 2 bitr3i ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) )