Metamath Proof Explorer
Description: Equivalence for substitution. (Contributed by NM, 2-Jun-1993) (Proof
shortened by Wolf Lammen, 23-Sep-2018)
|
|
Ref |
Expression |
|
Assertion |
sb6a |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sbcov |
⊢ ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
2 |
|
sb6 |
⊢ ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ) |
3 |
1 2
|
bitr3i |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ) |