| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sb8iota.1 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑤 ( 𝜑  ↔  𝑥  =  𝑧 ) | 
						
							| 3 | 2 | sb8 | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  ∀ 𝑤 [ 𝑤  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 ) ) | 
						
							| 4 |  | sbbi | ⊢ ( [ 𝑤  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  ( [ 𝑤  /  𝑥 ] 𝜑  ↔  [ 𝑤  /  𝑥 ] 𝑥  =  𝑧 ) ) | 
						
							| 5 | 1 | nfsb | ⊢ Ⅎ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 | 
						
							| 6 |  | equsb3 | ⊢ ( [ 𝑤  /  𝑥 ] 𝑥  =  𝑧  ↔  𝑤  =  𝑧 ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑦 𝑤  =  𝑧 | 
						
							| 8 | 6 7 | nfxfr | ⊢ Ⅎ 𝑦 [ 𝑤  /  𝑥 ] 𝑥  =  𝑧 | 
						
							| 9 | 5 8 | nfbi | ⊢ Ⅎ 𝑦 ( [ 𝑤  /  𝑥 ] 𝜑  ↔  [ 𝑤  /  𝑥 ] 𝑥  =  𝑧 ) | 
						
							| 10 | 4 9 | nfxfr | ⊢ Ⅎ 𝑦 [ 𝑤  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑤 [ 𝑦  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 ) | 
						
							| 12 |  | sbequ | ⊢ ( 𝑤  =  𝑦  →  ( [ 𝑤  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  [ 𝑦  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 ) ) ) | 
						
							| 13 | 10 11 12 | cbvalv1 | ⊢ ( ∀ 𝑤 [ 𝑤  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  ∀ 𝑦 [ 𝑦  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 ) ) | 
						
							| 14 |  | equsb3 | ⊢ ( [ 𝑦  /  𝑥 ] 𝑥  =  𝑧  ↔  𝑦  =  𝑧 ) | 
						
							| 15 | 14 | sblbis | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 ) ) | 
						
							| 16 | 15 | albii | ⊢ ( ∀ 𝑦 [ 𝑦  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  ∀ 𝑦 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 ) ) | 
						
							| 17 | 3 13 16 | 3bitri | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  ∀ 𝑦 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 ) ) | 
						
							| 18 | 17 | abbii | ⊢ { 𝑧  ∣  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑧 ) }  =  { 𝑧  ∣  ∀ 𝑦 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 ) } | 
						
							| 19 | 18 | unieqi | ⊢ ∪  { 𝑧  ∣  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑧 ) }  =  ∪  { 𝑧  ∣  ∀ 𝑦 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 ) } | 
						
							| 20 |  | dfiota2 | ⊢ ( ℩ 𝑥 𝜑 )  =  ∪  { 𝑧  ∣  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑧 ) } | 
						
							| 21 |  | dfiota2 | ⊢ ( ℩ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 )  =  ∪  { 𝑧  ∣  ∀ 𝑦 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 ) } | 
						
							| 22 | 19 20 21 | 3eqtr4i | ⊢ ( ℩ 𝑥 𝜑 )  =  ( ℩ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 ) |