Step |
Hyp |
Ref |
Expression |
1 |
|
sb8iota.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝜑 ↔ 𝑥 = 𝑧 ) |
3 |
2
|
sb8 |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑤 [ 𝑤 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |
4 |
|
sbbi |
⊢ ( [ 𝑤 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝑥 = 𝑧 ) ) |
5 |
1
|
nfsb |
⊢ Ⅎ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 |
6 |
|
equsb3 |
⊢ ( [ 𝑤 / 𝑥 ] 𝑥 = 𝑧 ↔ 𝑤 = 𝑧 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑦 𝑤 = 𝑧 |
8 |
6 7
|
nfxfr |
⊢ Ⅎ 𝑦 [ 𝑤 / 𝑥 ] 𝑥 = 𝑧 |
9 |
5 8
|
nfbi |
⊢ Ⅎ 𝑦 ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝑥 = 𝑧 ) |
10 |
4 9
|
nfxfr |
⊢ Ⅎ 𝑦 [ 𝑤 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) |
11 |
|
nfv |
⊢ Ⅎ 𝑤 [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) |
12 |
|
sbequ |
⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
13 |
10 11 12
|
cbvalv1 |
⊢ ( ∀ 𝑤 [ 𝑤 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |
14 |
|
equsb3 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) |
15 |
14
|
sblbis |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) ) |
16 |
15
|
albii |
⊢ ( ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) ) |
17 |
3 13 16
|
3bitri |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) ) |
18 |
17
|
abbii |
⊢ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = { 𝑧 ∣ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) } |
19 |
18
|
unieqi |
⊢ ∪ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = ∪ { 𝑧 ∣ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) } |
20 |
|
dfiota2 |
⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } |
21 |
|
dfiota2 |
⊢ ( ℩ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) = ∪ { 𝑧 ∣ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) } |
22 |
19 20 21
|
3eqtr4i |
⊢ ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |