Metamath Proof Explorer


Theorem sb8v

Description: Substitution of variable in universal quantifier. Version of sb8 with a disjoint variable condition, not requiring ax-13 . (Contributed by NM, 16-May-1993) (Revised by Wolf Lammen, 19-Jan-2023)

Ref Expression
Hypothesis sb8v.nf 𝑦 𝜑
Assertion sb8v ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sb8v.nf 𝑦 𝜑
2 nfs1v 𝑥 [ 𝑦 / 𝑥 ] 𝜑
3 sbequ12 ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) )
4 1 2 3 cbvalv1 ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )