Metamath Proof Explorer


Theorem sb9

Description: Commutation of quantification and substitution variables. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 5-Aug-1993) Allow a shortening of sb9i . (Revised by Wolf Lammen, 15-Jun-2019) (New usage is discouraged.)

Ref Expression
Assertion sb9 ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbequ12a ( 𝑦 = 𝑥 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) )
2 1 equcoms ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) )
3 2 sps ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) )
4 3 dral1 ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )
5 nfnae 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
6 nfnae 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦
7 nfsb2 ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 [ 𝑥 / 𝑦 ] 𝜑 )
8 7 naecoms ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 [ 𝑥 / 𝑦 ] 𝜑 )
9 nfsb2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 )
10 2 a1i ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) )
11 5 6 8 9 10 cbv2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )
12 4 11 pm2.61i ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )