| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbequ12a | ⊢ ( 𝑦  =  𝑥  →  ( [ 𝑥  /  𝑦 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 2 | 1 | equcoms | ⊢ ( 𝑥  =  𝑦  →  ( [ 𝑥  /  𝑦 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 3 | 2 | sps | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( [ 𝑥  /  𝑦 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 4 | 3 | dral1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥 [ 𝑥  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 5 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 6 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 7 |  | nfsb2 | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  Ⅎ 𝑦 [ 𝑥  /  𝑦 ] 𝜑 ) | 
						
							| 8 | 7 | naecoms | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 [ 𝑥  /  𝑦 ] 𝜑 ) | 
						
							| 9 |  | nfsb2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 10 | 2 | a1i | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( 𝑥  =  𝑦  →  ( [ 𝑥  /  𝑦 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 11 | 5 6 8 9 10 | cbv2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥 [ 𝑥  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 12 | 4 11 | pm2.61i | ⊢ ( ∀ 𝑥 [ 𝑥  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 ) |