Step |
Hyp |
Ref |
Expression |
1 |
|
sbequ12a |
⊢ ( 𝑦 = 𝑥 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
2 |
1
|
equcoms |
⊢ ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
3 |
2
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
4 |
3
|
dral1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
5 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
6 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
7 |
|
nfsb2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 [ 𝑥 / 𝑦 ] 𝜑 ) |
8 |
7
|
naecoms |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 [ 𝑥 / 𝑦 ] 𝜑 ) |
9 |
|
nfsb2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) |
10 |
2
|
a1i |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
11 |
5 6 8 9 10
|
cbv2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
12 |
4 11
|
pm2.61i |
⊢ ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |