Step |
Hyp |
Ref |
Expression |
1 |
|
sbabel.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
clabel |
⊢ ( { 𝑧 ∣ 𝜑 } ∈ 𝐴 ↔ ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ 𝜑 ) ) ) |
3 |
2
|
sbbii |
⊢ ( [ 𝑦 / 𝑥 ] { 𝑧 ∣ 𝜑 } ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ 𝜑 ) ) ) |
4 |
|
sbex |
⊢ ( [ 𝑦 / 𝑥 ] ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ 𝜑 ) ) ↔ ∃ 𝑣 [ 𝑦 / 𝑥 ] ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ 𝜑 ) ) ) |
5 |
|
sban |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ 𝜑 ) ) ↔ ( [ 𝑦 / 𝑥 ] 𝑣 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ 𝜑 ) ) ) |
6 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑣 ∈ 𝐴 |
7 |
6
|
sbf |
⊢ ( [ 𝑦 / 𝑥 ] 𝑣 ∈ 𝐴 ↔ 𝑣 ∈ 𝐴 ) |
8 |
|
sbv |
⊢ ( [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣 ) |
9 |
8
|
sbrbis |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑧 ∈ 𝑣 ↔ 𝜑 ) ↔ ( 𝑧 ∈ 𝑣 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
10 |
9
|
sbalv |
⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ 𝜑 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
11 |
7 10
|
anbi12i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝑣 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ 𝜑 ) ) ↔ ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
12 |
5 11
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ 𝜑 ) ) ↔ ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑣 [ 𝑦 / 𝑥 ] ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ 𝜑 ) ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
14 |
3 4 13
|
3bitri |
⊢ ( [ 𝑦 / 𝑥 ] { 𝑧 ∣ 𝜑 } ∈ 𝐴 ↔ ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
15 |
|
clabel |
⊢ ( { 𝑧 ∣ [ 𝑦 / 𝑥 ] 𝜑 } ∈ 𝐴 ↔ ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑣 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
16 |
14 15
|
bitr4i |
⊢ ( [ 𝑦 / 𝑥 ] { 𝑧 ∣ 𝜑 } ∈ 𝐴 ↔ { 𝑧 ∣ [ 𝑦 / 𝑥 ] 𝜑 } ∈ 𝐴 ) |