| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sb4b | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( [ 𝑧  /  𝑦 ] ∀ 𝑥 𝜑  ↔  ∀ 𝑦 ( 𝑦  =  𝑧  →  ∀ 𝑥 𝜑 ) ) ) | 
						
							| 2 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 3 |  | nfeqf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑥 𝑦  =  𝑧 ) | 
						
							| 4 |  | 19.21t | ⊢ ( Ⅎ 𝑥 𝑦  =  𝑧  →  ( ∀ 𝑥 ( 𝑦  =  𝑧  →  𝜑 )  ↔  ( 𝑦  =  𝑧  →  ∀ 𝑥 𝜑 ) ) ) | 
						
							| 5 | 4 | bicomd | ⊢ ( Ⅎ 𝑥 𝑦  =  𝑧  →  ( ( 𝑦  =  𝑧  →  ∀ 𝑥 𝜑 )  ↔  ∀ 𝑥 ( 𝑦  =  𝑧  →  𝜑 ) ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  ( ( 𝑦  =  𝑧  →  ∀ 𝑥 𝜑 )  ↔  ∀ 𝑥 ( 𝑦  =  𝑧  →  𝜑 ) ) ) | 
						
							| 7 | 2 6 | albid | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  ( ∀ 𝑦 ( 𝑦  =  𝑧  →  ∀ 𝑥 𝜑 )  ↔  ∀ 𝑦 ∀ 𝑥 ( 𝑦  =  𝑧  →  𝜑 ) ) ) | 
						
							| 8 | 1 7 | sylan9bbr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( [ 𝑧  /  𝑦 ] ∀ 𝑥 𝜑  ↔  ∀ 𝑦 ∀ 𝑥 ( 𝑦  =  𝑧  →  𝜑 ) ) ) | 
						
							| 9 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 10 |  | sb4b | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( [ 𝑧  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 ( 𝑦  =  𝑧  →  𝜑 ) ) ) | 
						
							| 11 | 9 10 | albid | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑦  =  𝑧  →  𝜑 ) ) ) | 
						
							| 12 |  | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑦  =  𝑧  →  𝜑 )  ↔  ∀ 𝑦 ∀ 𝑥 ( 𝑦  =  𝑧  →  𝜑 ) ) | 
						
							| 13 | 11 12 | bitrdi | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 ∀ 𝑥 ( 𝑦  =  𝑧  →  𝜑 ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 ∀ 𝑥 ( 𝑦  =  𝑧  →  𝜑 ) ) ) | 
						
							| 15 | 8 14 | bitr4d | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( [ 𝑧  /  𝑦 ] ∀ 𝑥 𝜑  ↔  ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 16 | 15 | ex | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( [ 𝑧  /  𝑦 ] ∀ 𝑥 𝜑  ↔  ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 17 |  | sbequ12 | ⊢ ( 𝑦  =  𝑧  →  ( ∀ 𝑥 𝜑  ↔  [ 𝑧  /  𝑦 ] ∀ 𝑥 𝜑 ) ) | 
						
							| 18 | 17 | sps | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑥 𝜑  ↔  [ 𝑧  /  𝑦 ] ∀ 𝑥 𝜑 ) ) | 
						
							| 19 |  | sbequ12 | ⊢ ( 𝑦  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 20 | 19 | sps | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 21 | 20 | dral2 | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑥 𝜑  ↔  ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 22 | 18 21 | bitr3d | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( [ 𝑧  /  𝑦 ] ∀ 𝑥 𝜑  ↔  ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 23 | 16 22 | pm2.61d2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  ( [ 𝑧  /  𝑦 ] ∀ 𝑥 𝜑  ↔  ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑 ) ) |