Metamath Proof Explorer


Theorem sbalv

Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypothesis sbalv.1 ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
Assertion sbalv ( [ 𝑦 / 𝑥 ] ∀ 𝑧 𝜑 ↔ ∀ 𝑧 𝜓 )

Proof

Step Hyp Ref Expression
1 sbalv.1 ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
2 sbal ( [ 𝑦 / 𝑥 ] ∀ 𝑧 𝜑 ↔ ∀ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 )
3 1 albii ( ∀ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑧 𝜓 )
4 2 3 bitri ( [ 𝑦 / 𝑥 ] ∀ 𝑧 𝜑 ↔ ∀ 𝑧 𝜓 )