Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 . (Contributed by NM, 14-May-1993) (Proof shortened by Steven Nguyen, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | sban | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
2 | 1 | sbimi | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → [ 𝑦 / 𝑥 ] 𝜑 ) |
3 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
4 | 3 | sbimi | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → [ 𝑦 / 𝑥 ] 𝜓 ) |
5 | 2 4 | jca | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
6 | pm3.2 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) | |
7 | 6 | sb2imi | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ) ) |
8 | 7 | imp | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ) |
9 | 5 8 | impbii | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |